
AIX 5L for POWER-based Systems

Assembler Language Reference

���

AIX 5L for POWER-based Systems

Assembler Language Reference

���

Second Edition (April 2001)

Before using the information in this book, read the general information in Notices.

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas 78758-3493. To send
comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any information that you
supply may be used without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . xi
Who Should Use This Book . xi
Highlighting . xi
ISO 9000 . xi
Related Publications. xi
Trademarks . xi

Chapter 1. Assembler Overview . 1
Features of the Assembler Prior to this Version . 1
Features of the AIX Version 4 Assembler . 1
Assembler Installation . 9

Chapter 2. Processing and Storage . 11
Related Information . 11
POWER family and PowerPC Architecture Overview 11
Branch Processor . 19
Fixed-Point Processor . 20
Floating-Point Processor . 24

Chapter 3. Syntax and Semantics . 27
Character Set . 27
Reserved Words . 27
Line Format . 28
Statements . 28
Symbols . 30
Constants . 33
Operators . 36
Expressions . 37

Chapter 4. Addressing . 45
Absolute Addressing . 45
Absolute Immediate Addressing . 45
Relative Immediate Addressing . 45
Explicit-Based Addressing . 45
Implicit-Based Addressing . 46
Location Counter . 47

Chapter 5. Assembling and Linking a Program . 49
Assembling and Linking a Program . 49
Understanding Assembler Passes . 53
Interpreting an Assembler Listing . 54
Interpreting a Symbol Cross-Reference . 58
Subroutine Linkage Convention . 59
Understanding and Programming the TOC . 77
Running a Program. 82

Chapter 6. Extended Instruction Mnemonics . 83
Extended Mnemonics of Branch Instructions . 83
Extended Mnemonics of Condition Register Logical Instructions 90
Extended Mnemonics of Fixed-Point Arithmetic Instructions 91
Extended Mnemonics of Fixed-Point Compare Instructions 91
Extended Mnemonics of Fixed-Point Load Instructions 92
Extended Mnemonics of Fixed-Point Logical Instructions 92

© Copyright IBM Corp. 1997, 2001 iii

Extended Mnemonics of Fixed-Point Trap Instructions 93
Extended Mnemonic mtcr for Moving to the Condition Register. 94
Extended Mnemonics of Moving from or to Special-Purpose Registers 94
Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift Instructions 98
Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift Instructions 101

Chapter 7. Migrating Source Programs . 105
Functional Differences for POWER family and PowerPC Instructions 105
Differences between POWER family and PowerPC Instructions with the Same Op Code 106
Extended Mnemonics Changes . 108
POWER family Instructions Deleted from PowerPC 110
New PowerPC Instructions. 111
Instructions Available Only for the PowerPC 601 RISC Microprocessor 111
Migration of Branch Conditional Statements with No Separator after Mnemonic 111

Chapter 8. Instruction Set . 113
abs (Absolute) Instruction . 113
add (Add) or cax (Compute Address) Instruction. 114
addc or a (Add Carrying) Instruction . 116
adde or ae (Add Extended) Instruction . 118
addi (Add Immediate) or cal (Compute Address Lower) Instruction 120
addic or ai (Add Immediate Carrying) Instruction . 121
addic. or ai. (Add Immediate Carrying and Record) Instruction 122
addis or cau (Add Immediate Shifted) Instruction . 123
addme or ame (Add to Minus One Extended) Instruction 125
addze or aze (Add to Zero Extended) Instruction . 127
and (AND) Instruction . 128
andc (AND with Complement) Instruction . 130
andi. or andil. (AND Immediate) Instruction . 131
andis. or andiu. (AND Immediate Shifted) Instruction 132
b (Branch) Instruction . 133
bc (Branch Conditional) Instruction. 134
bcctr or bcc (Branch Conditional to Count Register) Instruction 136
bclr or bcr (Branch Conditional Link Register) Instruction 138
clcs (Cache Line Compute Size) Instruction . 140
clf (Cache Line Flush) Instruction . 141
cli (Cache Line Invalidate) Instruction. 143
cmp (Compare) Instruction . 144
cmpi (Compare Immediate) Instruction . 146
cmpl (Compare Logical) Instruction . 147
cmpli (Compare Logical Immediate) Instruction . 148
cntlzd (Count Leading Zeros Double Word) Instruction 149
cntlzw or cntlz (Count Leading Zeros Word) Instruction 150
crand (Condition Register AND) Instruction . 151
crandc (Condition Register AND with Complement) Instruction 152
creqv (Condition Register Equivalent) Instruction . 153
crnand (Condition Register NAND) Instruction . 154
crnor (Condition Register NOR) Instruction. 155
cror (Condition Register OR) Instruction . 156
crorc (Condition Register OR with Complement) Instruction 157
crxor (Condition Register XOR) Instruction . 158
dcbf (Data Cache Block Flush) Instruction . 159
dcbi (Data Cache Block Invalidate) Instruction . 160
dcbst (Data Cache Block Store) Instruction . 161
dcbt (Data Cache Block Touch) Instruction . 163
dcbtst (Data Cache Block Touch for Store) Instruction 164

iv Assembler Language Reference

dcbz or dclz (Data Cache Block Set to Zero) Instruction 166
dclst (Data Cache Line Store) Instruction . 167
div (Divide) Instruction . 168
divd (Divide Double Word) Instruction . 170
divdu (Divide Double Word Unsigned) Instruction . 171
divs (Divide Short) Instruction . 173
divw (Divide Word) Instruction . 175
divwu (Divide Word Unsigned) Instruction . 176
doz (Difference or Zero) Instruction . 178
dozi (Difference or Zero Immediate) Instruction . 180
eciwx (External Control In Word Indexed) Instruction 181
ecowx (External Control Out Word Indexed) Instruction 182
eieio (Enforce In-Order Execution of I/O) Instruction 183
extsw (Extend Sign Word) Instruction. 184
eqv (Equivalent) Instruction . 185
extsb (Extend Sign Byte) Instruction . 186
extsh or exts (Extend Sign Halfword) Instruction. 187
fabs (Floating Absolute Value) Instruction . 188
fadd or fa (Floating Add) Instruction . 189
fcfid (Floating Convert from Integer Double Word) Instruction 192
fcmpo (Floating Compare Ordered) Instruction . 193
fcmpu (Floating Compare Unordered) Instruction . 194
fctid (Floating Convert to Integer Double Word) Instruction 195
fctidz (Floating Convert to Integer Double Word with Round toward Zero) Instruction 196
fctiw or fcir (Floating Convert to Integer Word) Instruction 197
fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero) Instruction 198
fdiv or fd (Floating Divide) Instruction . 200
fmadd or fma (Floating Multiply-Add) Instruction . 202
fmr (Floating Move Register) Instruction . 205
fmsub or fms (Floating Multiply-Subtract) Instruction 206
fmul or fm (Floating Multiply) Instruction . 208
fnabs (Floating Negative Absolute Value) Instruction 210
fneg (Floating Negate) Instruction . 212
fnmadd or fnma (Floating Negative Multiply-Add) Instruction 213
fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction 215
fres (Floating Reciprocal Estimate Single) Instruction 218
frsp (Floating Round to Single Precision) Instruction 219
frsqrte (Floating Reciprocal Square Root Estimate) Instruction 221
fsel (Floating-Point Select) Instruction . 223
fsqrt (Floating Square Root, Double-Precision) Instruction 224
fsqrts (Floating Square Root Single) Instruction . 225
fsub or fs (Floating Subtract) Instruction . 226
icbi (Instruction Cache Block Invalidate) Instruction. 229
isync or ics (Instruction Synchronize) Instruction. 230
lbz (Load Byte and Zero) Instruction . 231
lbzu (Load Byte and Zero with Update) Instruction . 232
lbzux (Load Byte and Zero with Update Indexed) Instruction 233
lbzx (Load Byte and Zero Indexed) Instruction . 234
ld (Load Double Word) Instruction . 235
ldarx (Store Double Word Reserve Indexed) Instruction 236
ldu (Store Double Word with Update) Instruction . 237
ldux (Store Double Word with Update Indexed) Instruction 238
ldx (Store Double Word Indexed) Instruction . 239
lfd (Load Floating-Point Double) Instruction . 240
lfdu (Load Floating-Point Double with Update) Instruction 241
lfdux (Load Floating-Point Double with Update Indexed) Instruction. 242

Contents v

lfdx (Load Floating-Point Double-Indexed) Instruction 243
lfq (Load Floating-Point Quad) Instruction . 244
lfqu (Load Floating-Point Quad with Update) Instruction 245
lfqux (Load Floating-Point Quad with Update Indexed) Instruction 246
lfqx (Load Floating-Point Quad Indexed) Instruction 247
lfs (Load Floating-Point Single) Instruction . 248
lfsu (Load Floating-Point Single with Update) Instruction. 249
lfsux (Load Floating-Point Single with Update Indexed) Instruction 251
lfsx (Load Floating-Point Single Indexed) Instruction 252
lha (Load Half Algebraic) Instruction . 253
lhau (Load Half Algebraic with Update) Instruction . 254
lhaux (Load Half Algebraic with Update Indexed) Instruction 255
lhax (Load Half Algebraic Indexed) Instruction . 256
lhbrx (Load Half Byte-Reverse Indexed) Instruction 257
lhz (Load Half and Zero) Instruction . 258
lhzu (Load Half and Zero with Update) Instruction . 259
lhzux (Load Half and Zero with Update Indexed) Instruction 260
lhzx (Load Half and Zero Indexed) Instruction . 261
lmw or lm (Load Multiple Word) Instruction. 262
lscbx (Load String and Compare Byte Indexed) Instruction 264
lswi or lsi (Load String Word Immediate) Instruction 266
lswx or lsx (Load String Word Indexed) Instruction . 267
lwa (Load Word Algebraic) Instruction . 269
lwarx (Load Word and Reserve Indexed) Instruction 269
lwaux (Load Word Algebraic with Update Indexed) Instruction. 271
lwax (Load Word Algebraic Indexed) Instruction . 272
lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction 273
lwz or l (Load Word and Zero) Instruction . 274
lwzu or lu (Load Word with Zero Update) Instruction 275
lwzux or lux (Load Word and Zero with Update Indexed) Instruction 276
lwzx or lx (Load Word and Zero Indexed) Instruction 277
maskg (Mask Generate) Instruction . 278
maskir (Mask Insert from Register) Instruction . 280
mcrf (Move Condition Register Field) Instruction. 281
mcrfs (Move to Condition Register from FPSCR) Instruction 282
mcrxr (Move to Condition Register from XER) Instruction 283
mfcr (Move from Condition Register) Instruction . 284
mffs (Move from FPSCR) Instruction . 285
mfmsr (Move from Machine State Register) Instruction 286
mfspr (Move from Special-Purpose Register) Instruction 287
mfsr (Move from Segment Register) Instruction . 289
mfsri (Move from Segment Register Indirect) Instruction 290
mfsrin (Move from Segment Register Indirect) Instruction 291
mtcrf (Move to Condition Register Fields) Instruction 292
mtfsb0 (Move to FPSCR Bit 0) Instruction . 293
mtfsb1 (Move to FPSCR Bit 1) Instruction . 294
mtfsf (Move to FPSCR Fields) Instruction . 295
mtfsfi (Move to FPSCR Field Immediate) Instruction 297
mtspr (Move to Special-Purpose Register) Instruction 298
mul (Multiply) Instruction . 300
mulhd (Multiply High Double Word) Instruction . 302
mulhdu (Multiply High Double Word Unsigned) Instruction 303
mulhw (Multiply High Word) Instruction . 304
mulhwu (Multiply High Word Unsigned) Instruction . 305
mulld (Multiply Low Double Word) Instruction . 307
mulli or muli (Multiply Low Immediate) Instruction . 308

vi Assembler Language Reference

mullw or muls (Multiply Low Word) Instruction . 309
nabs (Negative Absolute) Instruction . 311
nand (NAND) Instruction . 312
neg (Negate) Instruction . 313
nor (NOR) Instruction . 315
or (OR) Instruction . 316
orc (OR with Complement) Instruction . 318
ori or oril (OR Immediate) Instruction . 319
oris or oriu (OR Immediate Shifted) Instruction . 320
rac (Real Address Compute) Instruction . 321
rfi (Return from Interrupt) Instruction . 322
rfid (Return from Interrupt Double Word) Instruction 323
rfsvc (Return from SVC) Instruction . 324
rldcl (Rotate Left Double Word then Clear Left) Instruction 325
rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction 326
rldcr (Rotate Left Double Word then Clear Right) Instruction 327
rldic (Rotate Left Double Word Immediate then Clear) Instruction 328
rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction 329
rldicr (Rotate Left Double Word Immediate then Clear Right) Instruction 330
rldimi (Rotate Left Double Word Immediate then Mask Insert) Instruction 331
rlmi (Rotate Left Then Mask Insert) Instruction . 332
rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert) Instruction 334
rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask) Instruction 336
rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction 338
rrib (Rotate Right and Insert Bit) Instruction . 340
sc (System Call) Instruction . 341
si (Subtract Immediate) Instruction. 342
si. (Subtract Immediate and Record) Instruction . 343
sld (Shift Left Double Word) Instruction . 344
sle (Shift Left Extended) Instruction . 345
sleq (Shift Left Extended with MQ) Instruction . 346
sliq (Shift Left Immediate with MQ) Instruction . 347
slliq (Shift Left Long Immediate with MQ) Instruction 349
sllq (Shift Left Long with MQ) Instruction . 350
slq (Shift Left with MQ) Instruction . 352
slw or sl (Shift Left Word) Instruction . 353
srad (Shift Right Algebraic Double Word) Instruction 355
sradi (Shift Right Algebraic Double Word Immediate) Instruction 356
sraiq (Shift Right Algebraic Immediate with MQ) Instruction. 357
sraq (Shift Right Algebraic with MQ) Instruction . 358
sraw or sra (Shift Right Algebraic Word) Instruction 360
srawi or srai (Shift Right Algebraic Word Immediate) Instruction 362
srd (Shift Right Double Word) Instruction . 363
sre (Shift Right Extended) Instruction . 364
srea (Shift Right Extended Algebraic) Instruction . 366
sreq (Shift Right Extended with MQ) Instruction . 367
sriq (Shift Right Immediate with MQ) Instruction . 369
srliq (Shift Right Long Immediate with MQ) Instruction 370
srlq (Shift Right Long with MQ) Instruction . 372
srq (Shift Right with MQ) Instruction . 373
srw or sr (Shift Right Word) Instruction . 375
stb (Store Byte) Instruction . 376
stbu (Store Byte with Update) Instruction . 377
stbux (Store Byte with Update Indexed) Instruction. 378
stbx (Store Byte Indexed) Instruction . 379
std (Store Double Word) Instruction . 380

Contents vii

stdcx. (Store Double Word Conditional Indexed) Instruction 381
stdu (Store Double Word with Update) Instruction . 382
stdux (Store Double Word with Update Indexed) Instruction 383
stdx (Store Double Word Indexed) Instruction. 384
stfd (Store Floating-Point Double) Instruction . 385
stfdu (Store Floating-Point Double with Update) Instruction 386
stfdux (Store Floating-Point Double with Update Indexed) Instruction 387
stfdx (Store Floating-Point Double Indexed) Instruction 388
stfiwx (Store Floating-Point as Integer Word Indexed). 389
stfq (Store Floating-Point Quad) Instruction . 390
stfqu (Store Floating-Point Quad with Update) Instruction 391
stfqux (Store Floating-Point Quad with Update Indexed) Instruction. 392
stfqx (Store Floating-Point Quad Indexed) Instruction 393
stfs (Store Floating-Point Single) Instruction . 394
stfsu (Store Floating-Point Single with Update) Instruction 395
stfsux (Store Floating-Point Single with Update Indexed) Instruction 396
stfsx (Store Floating-Point Single Indexed) Instruction. 397
sth (Store Half) Instruction . 398
sthbrx (Store Half Byte-Reverse Indexed) Instruction 399
sthu (Store Half with Update) Instruction . 400
sthux (Store Half with Update Indexed) Instruction . 401
sthx (Store Half Indexed) Instruction . 402
stmw or stm (Store Multiple Word) Instruction . 403
stswi or stsi (Store String Word Immediate) Instruction 404
stswx or stsx (Store String Word Indexed) Instruction 405
stw or st (Store) Instruction . 407
stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction 408
stwcx. (Store Word Conditional Indexed) Instruction 409
stwu or stu (Store Word with Update) Instruction . 411
stwux or stux (Store Word with Update Indexed) Instruction 412
stwx or stx (Store Word Indexed) Instruction . 413
subf (Subtract From) Instruction. 414
subfc or sf (Subtract from Carrying) Instruction . 416
subfe or sfe (Subtract from Extended) Instruction . 418
subfic or sfi (Subtract from Immediate Carrying) Instruction. 420
subfme or sfme (Subtract from Minus One Extended) Instruction 421
subfze or sfze (Subtract from Zero Extended) Instruction 423
svc (Supervisor Call) Instruction. 425
sync (Synchronize) or dcs (Data Cache Synchronize) Instruction 426
td (Trap Double Word) Instruction . 428
tdi (Trap Double Word Immediate) Instruction. 429
tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction 430
tlbld (Load Data TLB Entry) Instruction . 431
tlbli (Load Instruction TLB Entry) Instruction . 433
tlbsync (Translation Look-Aside Buffer Synchronize) Instruction 434
tw or t (Trap Word) Instruction . 435
twi or ti (Trap Word Immediate) Instruction . 436
xor (XOR) Instruction. 437
xori or xoril (XOR Immediate) Instruction . 438
xoris or xoriu (XOR Immediate Shift) Instruction . 439

Chapter 9. Pseudo-ops . 441
Pseudo-ops Overview . 441
.align Pseudo-op . 444
.bb Pseudo-op . 445
.bc Pseudo-op . 446

viii Assembler Language Reference

.bf Pseudo-op . 446

.bi Pseudo-op . 447

.bs Pseudo-op . 447

.byte Pseudo-op . 448

.comm Pseudo-op . 449

.csect Pseudo-op . 451

.double Pseudo-op . 453

.drop Pseudo-op . 454

.dsect Pseudo-op . 455

.eb Pseudo-op . 457

.ec Pseudo-op . 457

.ef Pseudo-op . 458

.ei Pseudo-op . 458

.es Pseudo-op . 459

.extern Pseudo-op. 459

.file Pseudo-op . 460

.float Pseudo-op . 461

.function Pseudo-op . 461

.globl Pseudo-op . 462

.hash Pseudo-op . 463

.lcomm Pseudo-op . 464

.lglobl Pseudo-op . 465

.line Pseudo-op. 466

.long Pseudo-op . 467

.llong Pseudo-op . 467

.machine Pseudo-op . 468

.org Pseudo-op . 471

.quad Pseudo-op . 471

.ref Pseudo-op . 472

.rename Pseudo-op . 473

.set Pseudo-op . 474

.short Pseudo-op . 475

.source Pseudo-op . 476

.space Pseudo-op . 477

.stabx Pseudo-op . 477

.string Pseudo-op . 478

.tbtag Pseudo-op . 479

.tc Pseudo-op . 480

.toc Pseudo-op . 482

.tocof Pseudo-op . 482

.using Pseudo-op . 483

.vbyte Pseudo-op . 487

.xline Pseudo-op . 488

Appendix A. Messages . 489

Appendix B. Instruction Set Sorted by Mnemonic 509

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 523

Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 537

Appendix E. POWER family and POWER2 Instructions 541

Appendix F. PowerPC Instructions . 551

Contents ix

Appendix G. PowerPC 601 RISC Microprocessor Instructions 559

Appendix H. Value Definitions. 569
Bits 0-5. 569
Bits 6-30 . 569
Bit 31 . 570

Appendix I. Notices . 571

Index . 573

x Assembler Language Reference

About This Book

This book provides information on the assembler language program as implemented by the AIX Version 4
assembler. Topics covered include assembler operation, instructions, pseudo-operations, and extended
mnemonics for the POWER family and PowerPC architectures and their supported processors.

Who Should Use This Book
This book is intended for experienced assembler language programmers. To use this book effectively, you
should be familiar with this operating system or UNIX System V commands, assembler instructions,
pseudo-ops, and processor register usage.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels,
and icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a
programmer, messages from the system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain information about or related to the assembler:

v AIX 5L Version 5.1 Commands Reference Volume 1: a through c

v AIX 5L Version 5.1 Commands Reference Volume 2: d through h

v AIX 5L Version 5.1 Commands Reference Volume 3: i through m

v AIX 5L Version 5.1 Commands Reference Volume 4: n through r

v AIX 5L Version 5.1 Commands Reference Volume 5: s through u

v AIX 5L Version 5.1 Commands Reference Volume 6: v through z

v AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

v AIX

v IBM

v POWER Architecture

v PowerPC

v PowerPC 601

v PowerPC 603

v PowerPC Architecture

© Copyright IBM Corp. 1997, 2001 xi

../../cmds/aixcmds1/aixcmds1.htm
../../cmds/aixcmds2/aixcmds2.htm
../../cmds/aixcmds3/aixcmds3.htm
../../cmds/aixcmds4/aixcmds4.htm
../../cmds/aixcmds5/aixcmds5.htm
../../cmds/aixcmds6/aixcmds6.htm
../../aixprggd/genprogc/genprogc.htm

UNIX is a registered trademark of The Open Group in the United States and other countries.

Portions of Chapter 8 are used with the permission of Motorola, Inc.

Other company, product, or service names may be the trademarks or service marks of others.

xii Assembler Language Reference

Chapter 1. Assembler Overview

The assembler is a program that operates within the operating system. The assembler takes
machine-language instructions and translates them into machine object code. The following articles
discuss the features of the assembler:

v Features of the Assembler Prior to this Version

v Features of the AIX Version 4 Assembler

v Assembler Installation

Features of the Assembler Prior to this Version
Prior to this version, the assembler supported the POWER family architecture, a 32-bit implementation.

Assembler versions prior to Version 3.2.5 supported data alignment, block and segment definition, base
register assignment, and pseudo-ops to support floating-point constants, provide symbolic-debugger
information, and support other assembler operations. See the Pseudo-ops Overview for more information.

The assembler makes two passes through the source code while assembling a program. See
Understanding Assembler Passes for information on assembler passes. An assembler listing is produced
in the first and second pass of the assembler. This listing contains the assembler source code, as well as
any errors found in either pass of the assembler. See Interpreting an Assembler Listing for more
information.

A symbol cross-reference is available. If the -x flag is used with the as command, a symbol
cross-reference file is produced. This file contains information for all symbols defined and referenced in an
assembler source program. See Interpreting a Symbol Cross-Reference for more information.

Note: If the -x flag is used, the assembly process terminates after the first pass and does not
generate any object code.

The assembler generates errors and warnings during the first and second pass. Any error terminates the
assembly process, and no object code is generated. Warnings do not cause the assembly process to
terminate, and the assembler still generates object code. The assembler always reports errors, but reports
warnings only if the -w flag is used with the as command. Errors and warnings are described in Appendix
A. Messages.

Features of the AIX Version 4 Assembler

The AIX Version 4 assembler continues to provide the features of earlier versions, including:

v Multiple Hardware Architecture and Implementation Platform Support

v Host Machine Independence and Target Environment Indicator Flag

v Mnemonics Cross-Reference

v CPU ID Definition

v Source Language Type

v Detection of New Error Conditions

v New Warning Messages

v Special-Purpose Register Changes and Special-Purpose Register Field Handling

The following list is a summary of differences between the AIX Version 4 assembler and earlier versions:

© Copyright IBM Corp. 1997, 2001 1

../../cmds/aixcmds1/as.htm#SPTAS5ZF1C8CLIF
../../cmds/aixcmds1/as.htm#SPTJR5ZF220CLIF

v The AIX Version 4 assembler has a default assembly mode that treats POWER family/PowerPC
incompatibility errors as instructional warnings. For more information about this, see Host Machine
Independence and Target Environment Indicator Flag and Assembling and Linking a Program .

v The .machine pseudo-op has enhancements for restoring the default assembly mode and new push
and pop operations for using a stack of assembly mode values.

v Support for extended mnemonics for branch prediction is new in the AIX Version 4 assembler.

v The .ref pseudo-op is new in the AIX Version 4 assembler.

v The AIX Version 4 assembler supports TOC scalar data entries. For more information, see
Understanding and Programming the TOC , the .csect pseudo-op, the .comm pseudo-op, and the
.dsect pseudo-op.

v Expression handling is enhanced. Paired relocatable terms and opposite terms are new concepts in the
AIX Version 4 assembler. See Expressions .

v The assembler listing displays the assembler mode value for the current csect.

v Messages numbered 174 and higher are new messages added to the AIX Version 4 assembler. For
more information, see Appendix A. Messages.

The following list is a summary of enhancements in the AIX 4.3 assembler:

v Support for XCOFF64 object file format. This For more information about this, see XCOFF64 and the -a
command line argument.

v Support for new hardware implementations. The -m command line argument and the .machine
pseudo-op have been extended with additional options.

v The .llong pseudo-op is new in the AIX 4.3 assembler.

v Allowing the use of the underscore (″_″) character as a visual separator when specifying numeric
constants. See Constants for more information and examples.

Multiple Hardware Architecture and Implementation Platform Support

The assembler supports the following systems:

v Systems using the first-generation POWER family processors (POWER family Architecture).

v Systems using the POWER2 processors (POWER family Architecture).

v Systems using the PowerPC 601 RISC Microprocessor, PowerPC 604 RISC Microprocessor, or the
PowerPC A35 RISC Microprocessor (PowerPC Architecture).

The assembler also supports development of programs for the PowerPC 603 RISC Microprocessor
(PowerPC Architecture).

Attention: The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus most
of the POWER family instructions that are not included in the PowerPC architecture. This
implementation provides a POWER family-to-PowerPC bridge processor that runs existing POWER
family applications without recompiling and also runs new PowerPC applications. Future PowerPC
systems will not provide this bridge. An application should not be coded using a mixture of POWER
family and PowerPC architecture-unique instructions. Doing so can result in an application that will
run only on a PowerPC 601 RISC Microprocessor-based system. Such an application will not run on
an existing POWER family machine and is unlikely to run with acceptable performance on future
PowerPC machines.

There are several categories of instructions. The following table lists the categories of instructions and
shows which implementations support each instruction category. The ″X″ means the implementation
supports the instruction category.

Implementations Supporting Each Category of Instructions

2 Assembler Language Reference

Instruction Category POWER
family

POWER2 601 603 604 A35

POWER2-unique
instructions

X

POWER2 and PowerPC
common instructions,
not in POWER family

X X X X X

POWER family-unique
instructions not
supported by PowerPC
601 RISC
Microprocessor

X X

POWER family-unique
instructions supported
by PowerPC 601 RISC
Microprocessor

X X X

POWER family and
PowerPC common
instructions with same
mnemonics

X X X X X X

POWER family and
PowerPC common
instructions with different
mnemonics

X X X X X X

PowerPC instructions
supported by PowerPC
601 RISC
Microprocessor

X X X

Instructions unique to
PowerPC 601 RISC
Microprocessor

X

PowerPC instructions
not supported by
PowerPC 601 RISC
Microprocessor

X X

PowerPC 32-bit optional
instruction set 1

X X X

PowerPC 32-bit optional
instruction set 2

X X

Instructions unique to
PowerPC 603 RISC
Microprocessor

X

The following abbreviations are used in the heading of the previous table:

601 PowerPC 601 RISC Microprocessor
603 PowerPC 603 RISC Microprocessor
604 PowerPC 604 RISC Microprocessor

Chapter 1. Assembler Overview 3

Host Machine Independence and Target Environment Indicator Flag

The host machine is the hardware platform on which the assembler runs. The target machine is the
platform on which the object code is run. The assembler can assemble a source program for any target
machine, regardless of the host machine on which the assembler runs.

The target machine can be specified by using either the assembly mode option flag -m of the as
command or the .machine pseudo-op. If neither the -m flag nor the .machine pseudo-op is used, the
default assembly mode is used. If both the -m flag and a .machine pseudo-op are used, the .machine
pseudo-op overrides the -m flag. Multiple .machine pseudo-ops are allowed in a source program. The
value in a later .machine pseudo-op overrides a previous .machine pseudo-op.

The default assembly mode provided by the AIX Version 4 assembler, but not by earlier versions, has the
POWER family/PowerPC intersection as the target environment, but treats all POWER/PowerPC
incompatibility errors (including instructions outside the POWER/PowerPC intersection and invalid form
errors) as instructional warnings. The -W and -w assembler flags control whether these warnings are
displayed. In addition to being closen by the absence of the -m flag of the as command or the .machine
pseudo-op, the default assembly mode can also be explicitly specified with the -m flag of the as command
or with the .machine pseudo-op.

To assemble a source program containing platform-unique instructions from more than one platform
without errors or warnings, use one of the following methods:

v Use the .machine pseudo-op in the source program.

v Assemble the program with the assembly mode set to the any mode (with the -m flag of the as
command).

For example, the source code cannot contain both POWER family-unique instructions and PowerPC 601
RISC Microprocessor-unique instructions. This is also true for each of the sub-source programs contained
in a single source program. A sub-source program begins with a .machine pseudo-op and ends before the
next .machine pseudo-op. Since a source program can contain multiple .machine pseudo-ops, it normally
consists of several sub-source programs. For more information, see the .machine pseudo-op.

For more information on the -m flag, see the as command flags .

Mnemonics Cross-Reference

The PowerPC architecture introduces new mnemonics for instructions in the POWER family architecture.
The assembler supports both new (PowerPC) and existing (POWER family) mnemonics. The assembler
listing has a cross-reference for both mnemonics. The cross-reference is restricted to instructions that
have different mnemonics in the POWER family and PowerPC architectures, but which share the same op
codes, functions, and operand input formats.

The assembler listing contains one new column to display mnemonics cross-reference information. For
more information on the assembler listing, see Interpreting an Assembler Listing .

The mnemonics cross-reference helps the user migrate a source program from one architecture to
another. The new -s flag for the as command provides a mnemonics cross-reference in the assembler
listing to assist with migration. If the -s flag is not used, no mnemonics cross-reference is provided.

CPU ID Definition

During the assembly process the assembler determines which instruction set (from a list of several
complete instruction sets defined in the architectures or processor implementations) is the smallest
instruction set containing all the instructions used in the program. The program is given a CPU ID value

4 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTBEFF691050JEFF
../../cmds/aixcmds1/as.htm#SPTBEFF690724JEFF

indicating this instruction set. Therefore a CPU ID indicates the target environment on which the object
code can be run. The CPU ID value for the program is an assembler output value included in the XCOFF
object file generated by the assembler.

CPU ID can have the following values:

Value Description
com All instructions used in the program are in the PowerPC and POWER family architecture intersection.

(The com instruction set is the smallest instruction set.)
ppc All instructions used in the program are in the PowerPC architecture, 32-bit mode, but the program

does not satisfy the conditions for CPU ID value com. (The ppc instruction set is a superset of the
com instruction set.)

pwr All instructions used in the program are in the POWER family architecture, POWER family
implementation, but the program does not satisfy the conditions for CPU ID value com. (The pwr
instruction set is a superset of the com instruction set.)

pwr2 All instructions used in the program are in the POWER family architecture, POWER2 implementation,
but the program does not satisfy the conditions for CPU ID values com, ppc, or pwr. (The pwr2
instruction set is a superset of the pwr instruction set.)

any The program contains a mixture of instructions from the valid architectures or implementations, or
contains implementation-unique instructions.The program does not satisfy the conditions for CPU ID
values com, ppc, pwr, or pwr2. (The any instruction set is the largest instruction set.)

The assembler output value CPU ID is not the same thing as the assembly mode. The assembly mode
(determined by the -m flag of the as command and by use of the .machine pseudo-op in the program)
determines which instructions the assembler accepts without errors or warnings. The CPU ID is an output
value indicating which instructions are actually used.

In the output XCOFF file, the CPU ID is stored in the low-order byte of the n_type field in a symbol table
entry with the C_FILE storage class. The following list shows the low-order byte values and corresponding
CPU IDs for AIX Version 4:

Low-Order Byte CPU ID
0 Not a defined value. An invalid value or object was assembled prior to definition of the

CPU-ID field.
1 ppc
3 com
4 pwr
5 any
224 pwr2(pwrx)

Source Language Type

For cascade compilers, the assembler records the source-language type. In the XCOFF file, the high-order
byte of the n_type field of a symbol table entry with the C_FILE storage class holds the source language
type information. The following language types are defined:

High-Order Byte Language
0x00 C
0x01 FORTRAN
0x02 Pascal
0x03 Ada
0x04 PL/I
0x05 Basic
0x06 Lisp
0x07 Cobol

Chapter 1. Assembler Overview 5

High-Order Byte Language
0x08 Modula2
0x09 C++
0x0A RPG
0x0B PL8, PLIX
0x0C Assembler
0x0D-BxFF Reserved

The source language type is indicated by the .source pseudo-op. By default, the source-language type is
″Assembler.″ For more information, see the .source pseudo-op.

Detection of New Error Conditions

Messages 145 through 173, see Appendix A. Messages, were added to the assembler in an earlier
version. These messages report the following error conditions:

v Error number 149 is reported if the source program contains instructions that are not supported in the
intended target environment.

v An error is reported if the source program contains invalid instruction forms. This error occurs due to
incompatibilities between the POWER family and PowerPC architectures. Some restrictions that apply in
the PowerPC architecture do not apply in the POWER family architecture. According to the PowerPC
architecture, the following invalid instruction forms are defined:

– If an Rc bit, LK bit, or OE bit is defined as / (slash) but coded as 1, or is defined as 1 but coded as
0, the form is invalid. Normally, the assembler ensures that these bits contain correct values.

Some fields are defined with more than one / (slash) (for example, ″///″). If they are coded as
nonzero, the form is invalid. If certain input operands are used for these fields, they must be
checked. For this reason, the following two instructions are checked:

- For the PowerPC System Call instructions or the POWER family Supervisor Call instructions, if the
POWER family svca mnemonic is used when the assembly mode is PowerPC type, the SV field
must be 0. Otherwise, the instruction form is invalid and error number 165 is reported.

Note: The svc and svcl instructions are not supported in PowerPC target modes. The svcla
instruction is supported only on the PowerPC 601 RISC Microprocessor.

- For the Move to Segment Register Indirect instruction, if the POWER family mtsri mnemonic is
used in PowerPC target modes, the RA field must be 0. Otherwise, the instruction form is invalid
and error number 154 is reported. If the PowerPC mtsrin mnemonic is used in PowerPC target
modes, it requires only two input operands, so no check is needed.

– For all of the Branch Conditional instructions (including Branch Conditional, Branch Conditional to
Link Register, and Branch Conditional to Count Register), bits 0-3 of the BO field are checked. If the
bits that are required to contain 0 contain a nonzero value, error 150 is reported.

The encoding for the BO field is defined in the section ″Branch Processor Instructions″ of PowerPC
Architecture. The following list gives brief descriptions of the possible values for this field:

BO Description
0000y Decrement the Count Register (CTR); then branch if the value of the decremented CTR is not equal to 0

and the condition is False.
0001y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and the condition

is False.
001zy Branch if the condition is False.
0100y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and the condition

is True.
0101y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0 and the condition

is True.
011zy Branch if the condition is True.

6 Assembler Language Reference

BO Description
1z00y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.
1z01y Decrement the CTR; then branch if the value of the decremented CTR is not equal to 0.
1z1zz Branch always.

The z bit denotes a bit that must be 0. If the bit is not 0, the instruction form is invalid.

Note: The y bit provides a hint about whether a conditional branch is likely to be taken. The
value of this bit can be either 0 or 1. The default value is 0. The extended mnemonics for
Branch Prediction as defined in PowerPC Architecture are used to set this bit to 0 or 1. Support
for extended mnemonics for branch prediction is new in AIX Version 4. (See Extended
Mnemonics for Branch Prediction for more information.)

Branch always instructions do not have a y bit in the BO field. Bit 4 of the BO field should contain 0.
Otherwise, the instruction form is invalid.

The third bit of the BO field is specified as the ″decrement and test CTR″ option. For Branch
Conditional to Count Register instructions, the third bit of the BO field must not be 0. Otherwise, the
instruction form is invalid and error 163 is reported.

– For the update form of fixed-point load instructions, the PowerPC architecture requires that the RA
field not be equal to either 0 or the RT field value. Otherwise, the instruction form is invalid and error
number 151 is reported.

This restriction applies to the following instructions:

- lbzu

- lbzux

- lhzu

- lhsux

- lhau

- lhaux

- lwzu (lu in POWER family)

- lwzux (lux in POWER family)

– For the update form of fixed-point store instructions and floating-point load and store instructions, the
following instructions require only that the RA field not be equal to 0. Otherwise, the instruction form
is invalid and error number 166 is reported.

- lfsu

- lfsux

- lfdu

- lfdux

- stbu

- stbux

- sthu

- sthux

- stwu (stu in POWER family)

- stwux (stux in POWER family)

- stfsu

- stfux

- stfdu

- stfdux

Chapter 1. Assembler Overview 7

– For multiple register load instructions, the PowerPC architecture requires that the RA field and the
RB field, if present in the instruction format, not be in the range of registers to be loaded. Also,
RA=RT=0 is not allowed. If RA=RT=0, the instruction form is invalid and error 164 is reported. This
restriction applies to the following instructions:

- lmn (lm in POWER family)

- lswi (lsi in POWER family)

- lswx (lsx in POWER family)

Note: For the lswx instruction, the assembler only checks whether RA=RT=0, because the
load register range is determined by the content of the XER register at run time.

– For fixed-point compare instructions, the PowerPC architecture requires that the L field be equal to 0.
Otherwise, the instruction form is invalid and error number 154 is reported. This restriction applies to
the following instructions:

- cmp

- cmpi

- cmpli

- cmpl

Note: If the target mode is com, or ppc, the assembler checks the update form of
fixed-point load instructions, update form of fixed-point store instructions, update form of
floating-point load and store instructions, multiple-register load instructions, and fixed-point
compare instructions, and reports any errors. If the target mode is any, pwr, pwr2, or 601,
no check is performed.

New Warning Messages

Warning messages are listed when the -w flag is used with the as command. Some warning messages
are related to instructions with the same op code for POWER family and PowerPC:

v Several instructions have the same op code in both POWER family and PowerPC architectures, but
have different functional definitions. The assembler identifies these instructions and reports warning
number 153 when the target mode is com and the -w flag of the as command is used. Because these
mnemonics differ functionally, they are not listed in the mnemonics cross-reference of the assembler
listing generated when the -s flag is used with the as command. The following table lists these
instructions.

Same Op Codes with Different Mnemonics

POWER family PowerPC

dcs sync

ics isync

svca sc

mtsri mtsrin

lsx lswx

v The following instructions have the same mnemonics and op code, but have different functional
definitions in the POWER family and PowerPC architectures. The assembler cannot check for these,
because the differences are not based on the machine the instructions execute on, but rather on what
protection domain the instructions are running in.

– mfsr

– mfmsr

– mfdec

8 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTJR5ZF220CLIF
../../cmds/aixcmds1/as.htm#SPTBEFF690724JEFF

See ″Incompatibilities with the POWER family Architecture″ in the appendix of PowerPC Architecture for
more information about these instruction functions in the PowerPC architecture as well as the differences
between the POWER family and PowerPC architectures.

Special-Purpose Register Changes and Special-Purpose Register Field
Handling

TID, MQ, SDR0, RTCU, and RTCL are special-purpose registers (SPRs) defined in the POWER family
architecture. They are not valid in the PowerPC architecture. However, MQ, RTCU, and RTCL are still
available in the PowerPC 601 RISC Microprocessor.

DBATL, DBATU, IBATL, IBATU, TBL, and TBU are SPRs defined in the PowerPC architecture. They are
not supported for the PowerPC 601 RISC Microprocessor. The PowerPC 601 RISC Microprocessor uses
the BATL and BATU SPRs instead.

The assembler provides the extended mnemonics for ″move to or from SPR″ instructions. The extended
mnemonics include all the SPRs defined in the POWER family and PowerPC architectures. An error is
generated if an invalid extended mnemonic is used. The assembler does not support extended mnemonics
for any of the following:

v POWER2-unique SPRs (IMR, DABR, DSAR, TSR, and ILCR)

v PowerPC 601 RISC Microprocessor-unique SPRs (HID0, HID1, HID2, HID5, PID, BATL, and BATU)

v PowerPC 603 RISC Microprocessor-unique SPRs (DMISS, DCMP, HASH1, HASH2, IMISS, ICMP, RPA,
HID0, and IABR)

v PowerPC 604 RISC Microprocessor-unique SPRs (PIE, HID0, IABR, and DABR)

The assembler does not check the SPR field’s encoding value for the mtspr and mfspr instructions,
because the SPR encoding codes could be changed or reused. However, the assembler does check the
SPR field’s value range. If the target mode is pwr, pwr2, or com, the SPR field has a 5-bit length and a
maximum value of 31. Otherwise, the SPR field has a 10-bit length and a maximum value of 1023.

To maintain source-code compatibility of the POWER family and PowerPC architectures, the assembler
assumes that the low-order 5 bits and high-order 5 bits of the SPR number are reversed before they are
used as the input operands to the mfspr or mtspr instruction.

Assembler Installation
In AIX Version 4, the assembler is installed by installing the Base Application Development Toolkit, which
contains commands, files, and libraries for developing software applications.

Related Information
The as command.

The .machine pseudo-op, .source pseudo-op.

Chapter 1. Assembler Overview 9

../../cmds/aixcmds1/as.htm#HDRD2E0SHAD

10 Assembler Language Reference

Chapter 2. Processing and Storage

The characteristics of machine architecture and the implementation of processing and storage influence
the processor’s assembler language. The assembler supports the various processors that implement the
POWER family and PowerPC architectures. The assembler can support both the POWER family and
PowerPC architectures because the two architectures share a large number of instructions.

This chapter provides an overview and comparison of the POWER family and PowerPC architectures and
tells how data is stored in main memory and in registers. It also discusses the basic functions for both the
POWER family and PowerPC instruction sets.

All the instructions discussed in this chapter are nonprivileged. Therefore, all the registers discussed in this
chapter are related to nonprivileged instructions. For information on privileged instructions and their related
registers, see the PowerPC Architecture.

The following processing and storage articles provide an overview of the system microprocessor and tells
how data is stored both in main memory and in registers. This information provides some of the
conceptual background necessary to understand the function of the system microprocessor’s instruction
set and pseudo-ops.

v POWER family and PowerPC Architecture Overview

v Branch Processor

v Fixed-Point Processor

v Floating-Point Processor .

Related Information
PowerPC Architecture.

POWER family and PowerPC Architecture Overview

A POWER family or PowerPC microprocessor contains the sequencing and processing controls for
instruction fetch, instruction execution, and interrupt action, and implements the instruction set, storage
model, and other facilities defined in the POWER family and PowerPC architectures.

The processor can execute three classes of instructions:

v Branch instructions

v Fixed-point instructions

v Floating-point instructions

A POWER family or PowerPC microprocessor contains a branch processor, a fixed-point processor, and a
floating-point processor.

The following diagrams illustrates a logical representation of instruction processing for the PowerPC
microprocessor.

© Copyright IBM Corp. 1997, 2001 11

The following table shows the registers for the PowerPC user instruction set architecture. These registers
are in the CPU that are used for 32–bit applications and are available to the user.

Register Bits Available

Condition Register (CR) 0–31

Link Register (LR) 0–31

Count Register (CTR) 0–31

General Purpose Registers 00–31 (GPR) 0–31 for each register

Fixed-Point Exception Register (XER) 0–31

Floating-Point Registers 00–31 (FPR) 0–63 for each register

Floating Point Status and Control Register (FPSCR) 0–31

The following table shows the registers of the POWER family user instruction set architecture. These
registers are in the CPU that are used for 32–bit applications and are available to the user.

Register Bits Available

Condition Register (CR) 0–31

Link Register (LR) 0–31

Figure 1. Logical Processing Model. The process begins at the top with Branch Processing, which branches to either
fixed-point or float-point processing. These processes send and receive data from storage. Storage will also send
more instructions to Branch Processing at the top of the diagram.

12 Assembler Language Reference

Count Register (CTR) 0–31

General Purpose Registers 00–31 (GPR) 0–31 for each register

Multiply-Quotient Register (MQ) 0–31

Fixed-Point Exception Register (XER) 0–31

Floating-Point Registers 00–31 (FPR) 0–63 for each register

Floating Point Status and Control Register (FPSCR) 0–31

The processing unit is a word-oriented, fixed-point processor functioning in tandem with a
doubleword-oriented, floating-point processor. The microprocessor uses 32-bit word-aligned instructions. It
provides for byte, halfword, and word operand fetches and stores for fixed point, and word and doubleword
operand fetches and stores for floating point. These fetches and stores can occur between main storage
and a set of 32 general-purpose registers, and between main storage and a set of 32 floating-point
registers.

Instruction Forms

All instructions are four bytes long and are word-aligned. Therefore, when the processor fetches
instructions (for example, branch instructions), the two low-order bits are ignored. Similarly, when the
processor develops an instruction address, the two low-order bits of the address are 0.

Bits 0-5 always specify the op code. Many instructions also have an extended op code (for example,
XO-form instructions). The remaining bits of the instruction contain one or more fields. The alternative
fields for the various instruction forms are shown in the following figures:

v I Form

Bits Value

0-5 OPCD

6-29 LI

30 AA

31 LK

v B Form

Bits Value

0-5 OPCD

6-10 BO

11–15 BI

16–29 BD

30 AA

31 LK

v SC Form

Bits Value

0-5 OPCD

6-10 ///

11–15 ///

16–29 ///

Chapter 2. Processing and Storage 13

Bits Value

30 XO

31 /

v D Form

Bits Value

0-5 OPCD

6-10 RT, RS, FRT, FRS, TO, or BF, /, and L

11–15 RA

16–31 D, SI, or UI

v DS Form

Bits Value

0-5 OPCD

6-10 RT or RS

11–15 RA

16–29 DS

30–31 XO

v X Instruction Format

Bits Value

0-5 OPCD

6-10 RT, FRT, RS, FRS, TO, BT, or BF, /, and L

11–15 RA, FRA, SR, SPR, or BFA and //

16–20 RB, FRB, SH, NB, or U and /

21–30 XO or EO

31 Rc

– XL Instruction Format

Bits Value

0-5 OPCD

6-10 RT or RS

11–20 spr or /, FXM and /

21–30 XO or EO

31 Rc

– XFX Instruction Format

Bits Value

0-5 OPCD

6-10 RT or RS

11–20 spr or /, FXM and /

21–30 XO or EO

14 Assembler Language Reference

Bits Value

31 Rc

– XFL Instruction Format

Bits Value

0-5 OPCD

6 /

7–14 FLM

15 /

16–20 FRB

21–30 XO or EO

31 Rc

– XO Instruction Format

Bits Value

0-5 OPCD

6-10 RT

11–15 RA

16–20 RB

21 OE

22–30 XO or EO

31 Rc

v A Form

Bits Value

0-5 OPCD

6-10 FRT

11–15 FRA

16–20 FRB

21–25 FRC

26–30 XO

31 Rc

v M Form

Bits Value

0-5 OPCD

6-10 RS

′11–15 RA

16–20 RB or SH

21–25 MB

26–30 ME

31 Rc

Chapter 2. Processing and Storage 15

For some instructions, an instruction field is reserved or must contain a particular value. This is not
indicated in the previous figures, but is shown in the syntax for instructions in which these conditions are
required. If a reserved field does not have all bits set to 0, or if a field that must contain a particular value
does not contain that value, the instruction form is invalid. See Detection of New Error Conditions for more
information on invalid instruction forms.

Split-Field Notation

In some cases an instruction field occupies more than one contiguous sequence of bits, or occupies a
contiguous sequence of bits that are used in permuted order. Such a field is called a split field. In the
previous figures and in the syntax for individual instructions, the name of a split field is shown in lowercase
letters, once for each of the contiguous bit sequences. In the description of an instruction with a split field,
and in certain other places where the individual bits of a split field are identified, the name of the field in
lowercase letters represents the concatenation of the sequences from left to right. In all other cases, the
name of the field is capitalized and represents the concatenation of the sequences in some order, which
does not have to be left to right. The order is described for each affected instruction.

Instruction Fields

AA (30) Specifies an Absolute Address bit:

0 Indicates an immediate field that specifies an address relative to the current instruction
address. For I-form branches, the effective address of the branch target is the sum of the
LI field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and the address of
the branch instruction. For B-form branches, the effective address of the branch target is
the sum of the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family) and
the address of the branch instruction.

1 Indicates an immediate field that specifies an absolute address. For I-form branches, the
effective address of the branch target is the LI field sign-extended to 64 bits (PowerPC) or
32 bits (POWER family). For B-form branches, the effective address of the branch target is
the BD field sign-extended to 64 bits (PowerPC) or 32 bits (POWER family).

BA (11:15) Specifies a bit in the Condition Register (CR) to be used as a source.
BB (16:20) Specifies a bit in the CR to be used as a source.
BD (16:29) Specifies a 14-bit signed two’s-complement branch displacement that is concatenated on the right

with 0b00 and sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate
field.

BF (6:8) Specifies one of the CR fields or one of the Floating-Point Status and Control Register (FPSCR)
fields as a target. For POWER family, if i=BF(6:8), then the i field refers to bits i*4 to (i*4)+3 of the
register.

BFA (11:13) Specifies one of the CR fields or one of the FPSCR fields as a source. For POWER family, if
j=BFA(11:13), then the j field refers to bits j*4 to (j*4)+3 of the register.

BI (11:15) Specifies a bit in the CR to be used as the condition of a branch conditional instruction.

16 Assembler Language Reference

BO (6:10) Specifies options for the branch conditional instructions. The possible encodings for the BO field are:

BO Description

0000x Decrement Count Register (CTR). Branch if the decremented CTR value is not equal to 0
and the condition is false.

0001x Decrement CTR. Branch if the decremented CTR value is 0 and the condition is false.

001xx Branch if the condition is false.

0100x Decrement CTR. Branch if the decremented CTR value is not equal to 0 and the condition
is true.

0101x Decrement CTR. Branch if the decremented CTR value is equal to 0 and the condition is
true.

011x Branch if the condition is true.

1x00x Decrement CTR. Branch if the decremented CTR value is not equal to 0.

1x01x Decrement CTR. Branch if bits 32-63 of the CTR are 0 (PowerPC) or branch if the
decremented CTR value is equal to 0 (POWER family).

1x1xx Branch always.
BT (6:10) Specifies a bit in the CR or in the FPSCR as the target for the result of an instruction.
D (16:31) Specifies a 16-bit signed two’s-complement integer that is sign-extended to 64 bits (PowerPC) or 32

bits (POWER family). This is an immediate field.
EO (21:30) Specifies a10-bit extended op code used in X-form instructions.
EO’ (22:30) Specifies a 9-bit extended op code used in XO-form instructions.
FL1 (16:19) Specifies a 4-bit field in the svc (Supervisor Call) instruction.
FL2 (27:29) Specifies a 3-bit field in the svc instruction.
FLM (7:14) Specifies a field mask that specifies the FPSCR fields which are to be updated by the mtfsf

instruction:

Bit Description

7 FPSCR field 0 (bits 00:03)

8 FPSCR field 1 (bits 04:07)

9 FPSCR field 2 (bits 08:11)

10 FPSCR field 3 (bits 12:15)

11 FPSCR field 4 (bits 16:19)

12 FPSCR field 5 (bits 20:23)

13 FPSCR field 6 (bits 24:27)

14 FPSCR field 7 (bits 28:31)
FRA (11:15) Specifies a floating-point register (FPR) as a source of an operation.
FRB (16:20) Specifies an FPR as a source of an operation.
FRC (21:25) Specifies an FPR as a source of an operation.
FRS (6:10) Specifies an FPR as a source of an operation.
FRT (6:10) Specifies an FPR as the target of an operation.

Chapter 2. Processing and Storage 17

FXM (12:19) Specifies a field mask that specifies the CR fields that are to be updated by the mtcrf instruction:

Bit Description

12 CR field 0 (bits 00:03)

13 CR field 1 (bits 04:07)

14 CR field 2 (bits 08:11)

15 CR field 3 (bits 12:15)

16 CR field 4 (bits 16:19)

17 CR field 5 (bits 20:23)

18 CR field 6 (bits 24:27)

19 CR field 7 (bits 28:31)
I (16:19) Specifies the data to be placed into a field in the FPSCR. This is an immediate field.
LEV (20:26) This is an immediate field in the svc instruction that addresses the svc routine by b’1’ || LEV ||

b’00000 if the SA field is equal to 0.
LI (6:29) Specifies a 24-bit signed two’s-complement integer that is concatenated on the right with 0b00 and

sign-extended to 64 bits (PowerPC) or 32 bits (POWER family). This is an immediate field.
LK (31) Link bit:

0 Do not set the Link Register.

1 Set the Link Register. If the instruction is a branch instruction, the address of the instruction
following the branch instruction is placed in the Link Register. If the instruction is an svc
instruction, the address of the instruction following the svc instruction is placed into the Link
Register.

MB (21:25) and
ME (26:30)

(POWER family) Specifies a 32-bit string. This string consists of a substring of ones surrounded by
zeros, or a substring of zeros surrounded by ones. The encoding is:

MB (21:25)
Index to start bit of substring of ones.

ME (26:30)
Index to stop bit of substring of ones.

Let mstart=MB and mstop=ME:
If mstart < mstop + 1 then

mask(mstart..mstop) = ones
mask(all other) = zeros

If mstart = mstop + 1 then
mask(0:31) = ones

If mstart > mstop + 1 then
mask(mstop+1..mstart-1) = zeros
mask(all other) = ones

NB (16:20) Specifies the number of bytes to move in an immediate string load or store.
OPCD (0:5) Primary op code field.
OE (21) Enables setting the OV and SO fields in the XER for extended arithmetic.
RA (11:15) Specifies a general-purpose register (GPR) to be used as a source or target.
RB (16:20) Specifies a GPR to be used as a source.
Rc (31) Record bit:

0 Do not set the CR.

1 Set the CR to reflect the result of the operation.

For fixed-point instructions, CR bits (0:3) are set to reflect the result as a signed quantity.
Whether the result is an unsigned quantity or a bit string can be determined from the EQ
bit.

For floating-point instructions, CR bits (4:7) are set to reflect Floating-Point Exception,
Floating-Point Enabled Exception, Floating-Point Invalid Operation Exception, and
Floating-Point Overflow Exception.

18 Assembler Language Reference

RS (6:10) Specifies a GPR to be used as a source.
RT (6:10) Specifies a GPR to be used as a target.
SA (30) SVC Absolute:

0 svc routine at address ’1’ || LEV || b’00000’

1 svc routine at address x’1FE0’
SH (16:20) Specifies a shift amount.
SI (16:31) Specifies a 16-bit signed integer. This is an immediate field.
SPR (11:20) Specifies an SPR for the mtspr and mfspr instructions. See the mtspr and mfspr instructions for

information on the SPR encodings.
SR (11:15) Specifies one of the 16 Segment Registers. Bit 11 is ignored.
TO (6:10) Specifies the conditions on which to trap. See Fixed-Point Trap Instructions for more information on

condition encodings.

TO Bit ANDed with Condition

0 Compares less than.

1 Compares greater than.

2 Compares equal.

3 Compares logically less than.

4 Compares logically greater than.
U (16:19) Used as the data to be placed into the FPSCR. This is an immediate field.
UI (16:31) Specifies a 16-bit unsigned integer. This is an immediate field.
XO (21:30,
22:30, 26:30, or
30)

Extended op code field.

Related Information
“Chapter 2. Processing and Storage” on page 11.

“Branch Processor”.

“Fixed-Point Processor” on page 20.

“Floating-Point Processor” on page 24.

PowerPC Architecture.

Branch Processor
The branch processor has three 32-bit registers that are related to nonprivileged instructions:

v Condition Register

v Link Register

v Count Register

These registers are 32-bit registers. The PowerPC architecture supports both 32- and 64-bit
implementations. However, the AIX Version 4 Assembler supports 32-bit implementations only.

For both POWER family and PowerPC, the branch processor instructions include the branch instructions,
Condition Register field and logical instructions, and the system call instructions for PowerPC or the
supervisor linkage instructions for POWER family.

Chapter 2. Processing and Storage 19

Branch Instructions

Use branch instructions to change the sequence of instruction execution.

Since all branch instructions are on word boundaries, the processor performing the branch ignores bits 30
and 31 of the generated branch target address. All branch instructions can be used in unprivileged state.

A branch instruction computes the target address in one of four ways:

v Target address is the sum of a constant and the address of the branch instruction itself.

v Target address is the absolute address given as an operand to the instruction.

v Target address is the address found in the Link Register.

v Target address is the address found in the Count Register.

Using the first two of these methods, the target address can be computed sufficiently ahead of the branch
instructions to prefetch instructions along the target path.

Using the third and fourth methods, prefetching instructions along the branch path is also possible
provided the Link Register or the Count Register is loaded sufficiently ahead of the branch instruction.

The branch instructions include Branch Unconditional and Branch Conditional. In the various target forms,
branch instructions generally either branch unconditionally only, branch unconditionally and provide a
return address, branch conditionally only, or branch conditionally and provide a return address. If a branch
instruction has the Link bit set to 1, then the Link Register is altered to store the return address for use by
an invoked subroutine. The return address is the address of the instruction immediately following the
branch instruction.

The assembler supports various extended mnemonics for branch instructions that incorporate the BO field
only or the BO field and a partial BI field into the mnemonics. See Extended Mnemonics of Branch
Instructions for more information.

System Call Instructions

The PowerPC system call instructions are called supervisor call instructions in POWER family. Both types
of instructions generate an interrupt for the system to perform a service. The system call and supervisor
call instructions are:

v sc (System Call) instruction (PowerPC)

v svc (Supervisor Call) instruction (POWER family)

For more information about how these instructions are different, see Functional Differences for POWER
family and PowerPC Instructions .

Condition Register Instructions

The condition register instructions copy one CR field to another CR field or perform logical operations on
CR bits. The assembler supports several extended mnemonics for the Condition Register instructions. See
Extended Mnemonics of Condition Register Logical Instructions for information on extended mnemonics for
condition register instructions.

Fixed-Point Processor
The PowerPC fixed-point processor uses the following registers for nonprivileged instructions.

v Thirty-two 32-bit General-Purpose Registers (GPRs).

v One 32-bit Fixed-Point Exception Register.

20 Assembler Language Reference

The POWER family fixed-point processor uses the following registers for nonprivileged instructions. These
registers are:

v Thirty-two 32-bit GPRs

v One 32-bit Fixed-Point Exception Register

v One 32-bit Multiply-Quotient (MQ) Register

The GPRs are the principal internal storage mechanism in the fixed-point processor.

Fixed-Point Load and Store Instructions

The fixed-point load instructions move information from a location addressed by the effective address (EA)
into one of the GPRs. The load instructions compute the EA when moving data. If the storage access does
not cause an alignment interrupt or a data storage interrupt, the byte, halfword, or word addressed by the
EA is loaded into a target GPR. See Extended Mnemonics of Fixed-Point Load Instructions for information
on extended mnemonics for fixed-point load instructions.

The fixed-point store instructions perform the reverse function. If the storage access does not cause an
alignment interrupt or a data storage interrupt, the contents of a source GPR are stored in the byte,
halfword, or word in storage addressed by the EA.

In user programs, load and store instructions which access unaligned data locations (for example, an
attempt to load a word which is not on a word boundary) will be executed, but may incur a performance
penalty. Either the hardware performs the unaligned operation, or an alignment interrupt occurs and an
operating system alignment interrupt handler is invoked to perform the unaligned operation.

Fixed-Point Load and Store with Update Instructions

Load and store instructions have an ″update″ form, in which the base GPR is updated with the EA in
addition to the regular move of information from or to memory.

For POWER family load instructions, there are four conditions which result in the EA not being saved in
the base GPR:

1. The GPR to be updated is the same as the target GPR. In this case, the updated register contains
data loaded from memory.

2. The GPR to be updated is GPR 0.

3. The storage access causes an alignment interrupt.

4. The storage access causes a data storage interrupt.

For POWER family store instructions, conditions 2, 3, and 4 result in the EA not being saved into the base
GPR.

For PowerPC load and store instructions, conditions 1 and 2 above result in an invalid instruction form.

In user programs, load and store with update instructions which access an unaligned data location will be
performed by either the hardware or the alignment interrupt handler of the underlying operating system. An
alignment interrupt will result in the EA not being in the base GPR.

Fixed-Point String Instructions

The Fixed-Point String instructions allow the movement of data from storage to registers or from registers
to storage without concern for alignment. These instructions can be used for a short move between
arbitrary storage locations or to initiate a long move between unaligned storage fields. Load String Indexed
and Store String Indexed instructions of zero length do not alter the target register.

Chapter 2. Processing and Storage 21

Fixed-Point Address Computation Instructions

There are several address computation instructions in POWER family. These are merged into the
arithmetic instructions for PowerPC.

Fixed-Point Arithmetic Instructions

The fixed-point arithmetic instructions treat the contents of registers as 32-bit signed integers. Several
subtract mnemonics are provided as extended mnemonics of addition mnemonics. See Extended
Mnemonics of Fixed-Point Arithmetic Instructions for information on these extended mnemonics.

There are differences between POWER family and PowerPC for all of the fixed-point divide instructions
and for some of the fixed-point multiply instructions. To assemble a program that will run on both
architectures, the milicode routines for division and multiplication should be used. See Using Milicode
Routines for information on the available milicode routines.

Fixed-Point Compare Instructions

The fixed-point compare instructions algebraically or logically compare the contents of register RA with one
of the following:

v The sign-extended value of the SI field

v The UI field

v The contents of register RB

Algebraic comparison compares two signed integers. Logical comparison compares two unsigned integers.

There are different input operand formats for POWER family and PowerPC. A new operand, the L field, is
added for PowerPC. There are also invalid instruction form restrictions for PowerPC. The assembler
checks for invalid instruction forms in PowerPC assembly modes.

Extended mnemonics for fixed-point compare instructions are discussed in Extended Mnemonics of
Fixed-Point Compare Instructions .

Fixed-Point Trap Instructions

Fixed-point trap instructions test for a specified set of conditions. Traps can be defined for events that
should not occur during program execution, such as an index out of range or the use of an invalid
character. If a defined trap condition occurs, the system trap handler is invoked to handle a program
interruption. If the defined trap conditions do not occur, normal program execution continues.

The contents of register RA are compared with the sign-extended SI field or with the contents of register
RB, depending on the particular trap instruction. In 32-bit implementations, only the contents of the
low-order 32 bits of registers RA and RB are used in the comparison.

The comparison results in five conditions that are ANDed with the TO field. If the result is not 0, the system
trap handler is invoked. The five resulting conditions are:

TO Field Bit ANDed with Condition
0 Less than
1 Greater than
2 Equal
3 Logically less than
4 Logically greater than

22 Assembler Language Reference

Extended mnemonics for the most useful TO field values are provided, and a standard set of codes is
provided for the most common combinations of trap conditions. See Extended Mnemonics of Fixed-Point
Trap Instructions for information on these extended mnemonics and codes.

Fixed-Point Logical Instructions

Fixed-point logical instructions perform logical operations in a bit-wise fashion. The extended mnemonics
for the no-op instruction and the OR and NOR instructions are discussed in Extended Mnemonics of
Fixed-Point Logical Instructions .

Fixed-Point Rotate and Shift Instructions

The fixed-point processor performs rotate operations on data from a GPR. These instructions rotate the
contents of a register in one of the following ways:

v The result of the rotation is inserted into the target register under the control of a mask. If the mask bit
is 1, the associated bit of the rotated data is placed in the target register. If the mask bit is 0, the
associated data bit in the target register is unchanged.

v The result of the rotation is ANDed with the mask before being placed into the target register.

The rotate left instructions allow (in concept) right-rotation of the contents of a register. For 32-bit
implementations, an n-bit right-rotation can be performed by a left-rotation of 32-n.

The fixed-point shift instructions logically perform left and right shifts. The result of a shift instruction is
placed in the target register under the control of a generated mask.

Some POWER family shift instructions involve the MQ register. This register is also updated.

Extended mnemonics are provided for extraction, insertion, rotation, shift, clear, and clear left and shift left
operations. See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for information on these
mnemonics.

Fixed-Point Move to or from Special-Purpose Registers Instructions

Several instructions move the contents of one Special-Purpose Register (SPR) into another SPR or into a
General-Purpose Register (GPR). These instructions are supported by a set of extended mnemonics that
have each SPR encoding incorporated into the extended mnemonic. These include both nonprivileged and
privileged instructions.

Note: The SPR field length is 10 bits for PowerPC and 5 bits for POWER family. To maintain
source-code compatibility for POWER family and PowerPC, the low-order 5 bits and high-order 5 bits
of the SPR number must be reversed prior to being used as the input operand to the mfspr
instruction or the mtspr instruction. The numbers defined in the encoding tables for the mfspr and
mtspr instructions have already had their low-order 5 bits and high-order 5 bits reversed. When
using the dbx command to debug a program, remember that the low-order 5 bits and high-order 5
bits of the SPR number are reversed in the output from the dbx command.

There are different sets of SPRs for POWER family and PowerPC. Encodings for the same SPRs are
identical for POWER family and PowerPC except for moving from the DEC (Decrement) SPR.

Moving from the DEC SPR is privileged in PowerPC, but nonprivileged in POWER family. One bit in the
SPR field is 1 for privileged operations, but 0 for nonprivileged operations. Thus, the encoding number for
the DEC SPR for the mfdec instruction has different values in PowerPC and POWER family. The DEC
encoding number is 22 for PowerPC and 6 for POWER family. If the mfdec instruction is used, the

Chapter 2. Processing and Storage 23

../../cmds/aixcmds2/dbx.htm#HDRA2699EE

assembler determines the DEC encoding based on the current assembly mode. The following list shows
the assembler processing of the mfdec instruction for each assembly mode value:

v If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.

v If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

v If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as
instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC
SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

v If the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)
reports that the DEC SPR encoding 6 is used to generate the object code.

v If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No
object code is generated. In this situation, the mfspr instruction must be used to encode the DEC
number.

For more information on SPR encodings, see Extended Mnemonics of Moving from or to Special-Purpose
Registers .

Floating-Point Processor
The POWER family and PowerPC floating-point processors have the same register set for nonprivileged
instructions. The registers are:

v Thirty-two 64-bit floating-point registers

v One 32-bit Floating-Point Status and Control Register (FPSCR)

The floating-point processor provides high-performance execution of floating-point operations. Instructions
are provided to perform arithmetic, comparison, and other operations in floating-point registers, and to
move floating-point data between storage and the floating-point registers.

PowerPC and POWER2 also support conversion operations in floating-point registers.

Floating-Point Numbers

A floating-point number consists of a signed exponent and a signed significand, and expresses a quantity
that is the product of the signed fraction and the number 2**exponent. Encodings are provided in the data
format to represent:

v Finite numeric values

v +- Infinity

v Values that are ″Not a Number″ (NaN)

Operations involving infinities produce results obeying traditional mathematical conventions. NaNs have no
mathematical interpretation. Their encoding permits a variable diagnostic information field. They may be
used to indicate uninitialized variables and can be produced by certain invalid operations.

Interpreting the Contents of a Floating-Point Register

There are thirty-two 64-bit floating-point registers, numbered from floating-point register 0-31. All
floating-point instructions provide a 5-bit field that specifies which floating-point registers to use in the
execution of the instruction. Every instruction that interprets the contents of a floating-point register as a
floating-point value uses the double-precision floating-point format for this interpretation.

All floating-point instructions other than loads and stores are performed on operands located in
floating-point registers and place the results in a floating-point register. The Floating-Point Status and
Control Register and the Condition Register maintain status information about the outcome of some
floating-point operations.

24 Assembler Language Reference

Load and store double instructions transfer 64 bits of data without conversion between storage and a
floating-point register in the floating-point processor. Load single instructions convert a stored single
floating-format value to the same value in double floating format and transfer that value into a floating-point
register. Store single instructions do the opposite, converting valid single-precision values in a
floating-point register into a single floating-format value, prior to storage.

Floating-Point Load and Store Instructions

Floating-point load instructions for single and double precision are provided. Double-precision data is
loaded directly into a floating-point register. The processor converts single-precision data to double
precision prior to loading the data into a floating-point register, since the floating-point registers support
only floating-point double-precision operands.

Floating-point store instructions for single and double precision are provided. Single-precision stores
convert floating-point register contents to single precision prior to storage.

POWER2 provides load and store floating-point quad instructions. These are primarily to improve the
performance of arithmetic operations on large volumes of numbers, such as array operations. Data access
is normally a performance bottleneck for these types of operations. These instructions transfer 128 bits of
data, rather than 64 bits, in one load or store operation (that is, one storage reference). The 128 bits of
data is treated as two doubleword operands, not as one quadword operand.

Floating-Point Move Instructions

Floating-point move instructions copy data from one FPR to another, with data modification as described
for each particular instruction. These instructions do not modify the FPSCR.

Floating-Point Arithmetic Instructions

Floating-point arithmetic instructions perform arithmetic operations on floating-point data contained in
floating-point registers.

Floating-Point Multiply-Add Instructions

Floating-point multiply-add instructions combine a multiply operation and an add operation without an
intermediate rounding operation. The fractional part of the intermediate product is 106 bits wide, and all
106 bits are used in the add or subtract portion of the instruction.

Floating-Point Compare Instructions

Floating-point compare instructions perform ordered and unordered comparisons of the contents of two
FPRs. The CR field specified by the BF field is set based on the result of the comparison. The comparison
sets one bit of the designated CR field to 1, and sets all other bits to 0. The Floating-Point Condition Code
(FPCC) (bits 16:19) is set in the same manner.

The CR field and the FPCC are interpreted as follows:

Condition-Register Field and Floating-Point Condition Code Interpretation

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

Chapter 2. Processing and Storage 25

3 FU (FRA) ? (FRB) (unordered)

Floating-Point Conversion Instructions

Floating-point conversion instructions are only provided for PowerPC and POWER2. These instructions
convert a floating-point operand in an FPR into a 32-bit signed fixed-point integer. The CR1 field and the
FPSCR are altered.

Floating-Point Status and Control Register Instructions

Floating-Point Status and Control Register Instructions manipulate data in the FPSCR.

Related Information
“Chapter 2. Processing and Storage” on page 11.

“POWER family and PowerPC Architecture Overview” on page 11.

“Branch Processor” on page 19.

“Fixed-Point Processor” on page 20.

PowerPC Architecture.

26 Assembler Language Reference

Chapter 3. Syntax and Semantics

This overview explains the syntax and semantics of assembler language, including the following items:

v Character Set

v Reserved Words

v Line Format

v Statements

v Symbols

v Constants

v Operators

v Expressions

Character Set

All letters and numbers are allowed. The assembler discriminates between uppercase and lowercase
letters. To the assembler, the variables Name and name identify distinct symbols.

Some blank spaces are required, while others are optional. The assembler allows you to substitute tabs
for spaces.

The following characters have special meaning in the operating system assembler language:

, (comma) Operand separator. Commas are allowed in statements only between operands, for
example:

a 3,4,5
(pound sign) Comments. All text following a # to the end of the line is ignored by the assembler. A

can be the first character in a line, or it can be preceded by any number of characters,
blank spaces, or both. For example:

a 3,4,5 # Puts the sum of GPR4 and GPR5 into GPR3.
: (colon) Defines a label. The : always appears immediately after the last character of the label

name and defines a label equal to the value contained in the location counter at the
time the assembler encounters the label. For example:

add: a 3,4,5 # Puts add equal to the address
where the a instruction is found.

; (semicolon) Instruction separator. A semicolon separates two instructions that appear on the same
line. Spaces around the semicolon are optional. A single instruction on one line does
not have to end with a semicolon.

To keep the assembler listing clear and easily understandable, it is suggested that each
line contain only one instruction. For example:

a 3,4,5 # These two lines have
a 4,3,5 # the same effect as...

a 3,4,5; a 4,3,5 # ...this line.
$ (dollar sign) Refers to the current value in the assembler’s current location counter. For example:

dino: .long 1,2,3
size: .long $ - dino

Reserved Words

There are no reserved words in the operating system assembler language. The mnemonics for instructions
and pseudo-ops are not reserved. They can be used in the same way as any other symbols.

© Copyright IBM Corp. 1997, 2001 27

There may be restrictions on the names of symbols that are passed to programs written in other
languages.

Line Format

The assembler supports a free-line format for source lines, which does not require that items be in a
particular column position.

For all instructions, a separator character (space or tab) is recommended between the mnemonic and
operands of the statement for readability. With the AIX Version 4 assembler, Branch Conditional
instructions need a separator character (space or tab) between the mnemonic and operands for
unambiguous processing by the assembler. (See Migration of Branch Conditional Statements with No
Separator after Mnemonic for more information.)

The assembler language puts no limit on the number of characters that can appear on a single input line.
If a code line is longer than one line on a terminal, line wrapping will depend on the editor used. However,
the listing will only display 512 ASCII characters per line.

Blank lines are allowed; the assembler ignores them.

Statements

The assembler language has three kinds of statements: instruction statements, pseudo-operation
statements, and null statements. The assembler also uses separator characters, labels, mnemonics,
operands, and comments.

Instruction Statements and Pseudo-Operation Statements

An instruction or pseudo-op statement has the following syntax:

[label:] mnemonic [operand1[,operand2...]] [# comment]

The assembler recognizes the end of a statement when one of the following appears:

v An ASCII new-line character

v A # (pound sign) (comment character)

v A ; (semicolon)

Null Statements

A null statement does not have a mnemonic or any operands. It can contain a label, a comment, or both.
Processing a null statement does not change the value of the location counter.

Null statements are useful primarily for making assembler source code easier for people to read.

A null statement has the following syntax:

[label:] [# comment]

The spaces between the label and the comment are optional.

If the null statement has a label, the label receives the value of the next statement, even if the next
statement is on a different line. The assembler gives the label the value contained in the current location
counter. For example:

28 Assembler Language Reference

here:
a 3,4,5

is synonymous with
here: a 3,4,5

Note: Certain pseudo-ops (.csect, .comm, and .lcomm, for example) may prevent a null statement’s
label from receiving the value of the address of the next statement.

Separator Characters

The separator characters are spaces, tabs, and commas. Commas separate operands. Spaces or tabs
separate the other parts of a statement. A tab can be used wherever a space is shown in this book.

The spaces shown in the syntax of an instruction or pseudo-op are required.

Branch Conditional instructions need a separator character (space or tab) between the mnemonic and
operands for unambiguous processing by the assembler. (See Migration of Branch Conditional Statements
with No Separator after Mnemonic for more information.)

Optionally, you can put one or more spaces after a comma, before a pound sign (#), and after a #.

Labels

The label entry is optional. A line may have zero, one, or more labels. Moreover, a line may have a label
but no other contents.

To define a label, place a symbol before the : (colon). The assembler gives the label the value contained
in the assembler’s current location counter. This value represents a relocatable address. For example:
subtr: sf 3,4,5

The label subtr: receives the value
of the address of the sf instruction.
You can now use subtr in subsequent statements
to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label receives its value
before the alignment occurs. For example:
Assume that the location counter now
contains the value of 98.

place: .long expr

When the assembler processes this statement, it
sets place to address 98. But the .long is a pseudo-op that
aligns expr on a fullword. Thus, the assembler puts
expr at the next available fullword boundary, which is

address 100. In this case, place is not actually the address
at which expr is stored; referring to place will not put you
at the location of expr.

Mnemonics

The mnemonic field identifies whether a statement is an instruction statement or a pseudo-op statement.
Each mnemonic requires a certain number of operands in a certain format.

For an instruction statement, the mnemonic field contains an abbreviation like ai (Add Immediate) or sf
(Subtract From). This mnemonic describes an operation where the system microprocessor processes a

Chapter 3. Syntax and Semantics 29

single machine instruction that is associated with a numerical operation code (op code). All instructions are
4 bytes long. When the assembler encounters an instruction, the assembler increments the location
counter by the required number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler program itself. There
is no associated op code, and the mnemonic does not describe an operation to the processor. Some
pseudo-ops increment the location counter; others do not. See the Pseudo-ops Overview for a list of
pseudo-ops that change the location counter.

Operands

The existence and meaning of the operands depends on the mnemonic used. Some mnemonics do not
require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand’s mnemonic. Many operands are
expressions that refer to registers or symbols. For instruction statements, operands can be immediate data
directly assembled into the instruction.

Comments

Comments are optional and are ignored by the assembler. Every line of a comment must be preceded by
a # (pound sign); there is no other way to designate comments.

Symbols
A symbol is a single character or combination of characters used as a label or operand.

Constructing Symbols

Symbols may consist of numeric digits, underscores, periods, uppercase or lowercase letters, or any
combination of these. The symbol cannot contain any blanks or special characters, and cannot begin with
a digit. Uppercase and lowercase letters are distinct.

If a symbol must contain blank or special characters because of external references, the .rename
pseudo-op can be used to treat a local name as a synonym or alias for the external reference name.

From the assembler’s and loader’s perspective, the length of a symbol name is limited only by the amount
of storage you have.

Note: Other routines linked to the assembler language files may have their own constraints on
symbol length.

With the exception of control section (csect) or Table of Contents (TOC) entry names, symbols may be
used to represent storage locations or arbitrary data. The value of a symbol is always a 32-bit quantity.

The following are valid examples of symbol names:

v READER

v XC2345

v result.a

v resultA

v balance_old

v _label9

v .myspot

30 Assembler Language Reference

The following are not valid symbol names:

7_sum (Begins with a digit.)
#ofcredits (The # makes this a comment.)
aa*1 (Contains *, a special character.)
IN AREA (Contains a blank.)

You can define a symbol by using it in one of two ways:

v As a label for an instruction or pseudo-op

v As the name operand of a .set, .comm, .lcomm, .dsect, .csect, or .rename pseudo-op

Defining a Symbol with a Label
You can define a symbol by using it as a label. For example:

.using dataval[RW],5
loop:

bgt cont
.
.

bdz loop
cont: l 3,dataval

a 4,3,4
.
.

.csect dataval[RW]
dataval: .short 10

The assembler gives the value of the location counter at the instruction or pseudo-op’s leftmost byte. In
the example here, the object code for the l instruction contains the location counter value for dataval.

At run time, an address is calculated from the dataval label, the offset, and GPR 5, which needs to contain
the address of csect dataval[RW]. In the example, the l instruction uses the 16 bits of data stored at the
dataval label’s address.

The value referred to by the symbol actually occupies a memory location. A symbol defined by a label is a
relocatable value.

The symbol itself does not exist at run time. However, you can change the value at the address
represented by a symbol at run time if some code changes the contents of the location represented by the
dataval label.

Defining a Symbol with a Pseudo-op
Use a symbol as the name operand of a .set pseudo-op to define the symbol. This pseudo-op has the
format:

.set name,exp

The assembler evaluates the exp operand, then assigns the value and type of the exp operand to the
symbol name. When the assembler encounters that symbol in an instruction, the assembler puts the
symbol’s value into the instruction’s object code.

For example:
.set number,10

.

Chapter 3. Syntax and Semantics 31

.
ai 4,4,number

In the preceding example, the object code for the ai instruction contains the value assigned to number, that
is, 10.

The value of the symbol is assembled directly into the instruction and does not occupy any storage space.
A symbol defined with a .set pseudo-op can have an absolute or relocatable type, depending on the type
of the exp operand. Also, because the symbol occupies no storage, you cannot change the value of the
symbol at run time; reassembling the file will give the symbol a new value.

A symbol also can be defined by using it as the name operand of a .comm, .lcomm, .csect, .dsect, or
.rename pseudo-op. Except in the case of the .dsect pseudo-op, the value assigned to the symbol
describes storage space.

CSECT Entry Names
A symbol can also be defined when used as the qualname operand of the .csect pseudo-op. When used
in this context, the symbol is defined as the name of a csect with the specified storage mapping class.
Once defined, the symbol takes on a storage mapping class that corresponds to the name qualifier.

A qualname operand takes the form of:

symbol[XX]

OR

symbol{XX}

where XX is the storage mapping class.

For more information, see the .csect pseudo-op.

The Special Symbol TOC
Provisions have been made for the special symbol TOC. In XCOFF format modules, this symbol is
reserved for the TOC anchor, or the first entry in the TOC. The symbol TOC has been predefined in the
assembler so that the symbol TOC can be referred to if its use is required. The .toc pseudo-op creates the
TOC anchor entry. For example, the following data declaration declares a word that contains the address
of the beginning of the TOC:
.long TOC[TC0]

This symbol is undefined unless a .toc pseudo-op is contained within the assembler file.

For more information, see the .toc pseudo-op.

TOC Entry Names
A symbol can be defined when used as the Name operand of the .tc pseudo-op. When used in this
manner, the symbol is defined as the name of a TOC entry with a storage mapping class of TC.

The Name operand takes the form of:

symbol[TC]

For more information, see the .tc pseudo-op.

32 Assembler Language Reference

Using a Symbol before Defining It
It is possible to use a symbol before you define it. Using a symbol and then defining it later in the same
file is called forward referencing. For example, the following is acceptable:
Assume that GPR 6 contains the address of .csect data[RW].

l 5,ten(6)
.
.

.csect data[RW]
ten: .long 10

If the symbol is not defined in the file in which it occurs, it may be an external symbol or an undefined
symbol. When the assembler finds undefined symbols, it gives an error message unless the -u flag of the
as command is used to suppress this error message. External symbols may be declared in a statement
using the .extern pseudo-op.

Declaring an External Symbol
If a local symbol is used that is defined in another module, the .extern pseudo-op is used to declare that
symbol in the local file as an external symbol. Any undefined symbols that do not appear in a statement
with the .extern or .globl pseudo-op will be flagged with an error.

Constants

The assembler language provides four kinds of constants:

v Arithmetic constants

v Character constants

v Symbolic constants

v String constants

When the assembler encounters an arithmetic or character constant being used as an instruction’s
operand, the value of that constant is assembled into the instruction. When the assembler encounters a
symbol being used as a constant, the value of the symbol is assembled into the instruction.

Arithmetic Constants
The assembler language provides four kinds of arithmetic constants:

v Decimal

v Octal

v Hexadecimal

v Floating point

In 32-bit mode, the largest signed positive integer number that can be represented is the decimal value
(2**31) - 1. The largest negative value is -(2**31). In 64-bit mode, the largest signed positive integer
number that can be represented is (2**63)-1. The largest negative value is -(2**63). Regardless of the
base (for example, decimal, hexadecimal, or octal), the assembler regards integers as 32-bit constants.

The interpretation of a constant is dependent upon the assembly mode. In 32-bit mode, the AIX 4.3
assembler behaves in the same manner as in AIX 4.2 and prior: the assembler regards integers as 32-bit
constants. In 64-bit mode, all constants are interpreted as 64-bit values. This may lead to results that differ
from expectations. For example, in 32-bit mode, the hexadecimal value 0xFFFFFFFF is equivalent to the
decimal value of ″-1″. In 64-bit mode, however, the decimal equivalent is 4294967295. To obtain the value
″-1″ the hexadecimal constant 0xFFFF_FFFF_FFFF_FFFF (or the octal equivalent), or the decimal value
-1, should be used.

Chapter 3. Syntax and Semantics 33

../../cmds/aixcmds1/as.htm#SPTC2780F1469JEFF

In both 32-bit and 64-bit mode, the result of integer expressions may be truncated if the size of the target
storage area is too small to contain an expression result. (In this context, truncation refers to the removal
of the excess most-significant bits.)

To improve readability of large constants, especially 64-bit values, the assembler will accept constants
containing the underscore (″_″) character. The underscore may appear anywhere within the number
except the first numeric position. For example, consider the following table:

Constant Value Valid/Invalid?

1_800_500 Valid

0xFFFFFFFF_00000000 Valid

0b111010_00100_00101_00000000001000_00 Valid (this is the ″ld 4,8(5)″ instruction)

0x_FFFF Invalid

The third example shows a binary representation of an instruction where the underscore characters are
used to delineate the various fields within the instruction. The last example contains a hexadecimal prefix,
but the character immediately following is not a valid digit; the constant is therefore invalid.

Arithmetic Evaluation
In 32-bit mode, arithmetic evaluation takes place using 32-bit math. For the .llong pseudo-op, which is
used to specify a 64-bit quantity, any evaluation required to initialize the value of the storage area uses
32-bit arithmetic.

For 64-bit mode, arithmetic evaluation uses 64-bit math. No sign extension occurs, even if a number might
be considered negative in a 32-bit context. Negative numbers must be specified using decimal format, or
(for example, in hexadecimal format) by using a full complement of hexadecimal digits (16 of them).

Decimal Constants
Base 10 is the default base for arithmetic constants. If you want to specify a decimal number, type the
number in the appropriate place:
ai 5,4,10
Add the decimal value 10 to the contents
of GPR 4 and put the result in GPR 5.

Do not prefix decimal numbers with a 0. A leading zero indicates that the number is octal.

Octal Constants
To specify that a number is octal, prefix the number with a 0:
ai 5,4,0377
Add the octal value 0377 to the contents
of GPR 4 and put the result in GPR 5.

Hexadecimal Constants
To specify a hexadecimal number, prefix the number with 0X or 0x. You can use either uppercase or
lowercase for the hexadecimal numerals A through F.
ai 5,4,0xF
Add the hexadecimal value 0xF to the
contents of GPR 4 and put the result
in GPR 5.

Binary Constants
To specify a binary number, prefix the number with 0B or Ob.
ori 3,6,0b0010_0001
OR (the decimal value) 33 with the
contents of GPR 6 and put the result
in GPR 3.

34 Assembler Language Reference

Floating-Point Constants
A floating-point constant has the following components in the specified order:

Integer Part Must be one or more digits.
Decimal Point . (period). Optional if no fractional part follows.
Fraction Part Must be one or more digits. The fraction part is optional.
Exponent Part Optional. Consists of an e or E, possibly followed by a + or -, followed by one or more

digits.

For assembler input, you can omit the fraction part. For example, the following are valid floating-point
constants:

v 0.45

v 1e+5

v 4E-11

v 0.99E6

v 357.22e12

Floating-point constants are allowed only where fcon expressions are found.

There is no bounds checking for the operand.

Note:Prior to AIX 4.3, the atof subroutine is called to get the floating-point number from input. In AIX
4.3, the assembler uses the strtold subroutine to perform the conversion to floating point. Check
current documentation for restrictions and return values.

Character Constants
To specify an ASCII character constant, prefix the constant with a ’ (single quotation mark). Character
constants can appear anywhere an arithmetic constant is allowed, but you can only specify one character
constant at a time. For example ’A represents the ASCII code for the character A.

Character constants are convenient when you want to use the code for a particular character as a
constant, for example:
cal 3,'X(0)
Loads GPR 3 with the ASCII code for
the character X (that is, 0x58).

After the cal instruction executes, GPR 3 will
contain binary
0x0000 0000 0000 0000 0000 0000 0101 1000.

Symbolic Constants
A symbol can be used as a constant by giving the symbol a value. The value can then be referred to by
the symbol name, instead of by using the value itself.

Using a symbol as a constant is convenient if a value occurs frequently in a program. Define the symbolic
constant once by giving the value a name. To change its value, simply change the definition (not every
reference to it) in the program. The changed file must be reassembled before the new symbol constant is
valid.

A symbolic constant can be defined by using it as a label or by using it in a .set statement.

String Constants
String constants differ from other types of constants in that they can be used only as operands to certain
pseudo-ops, such as the .rename, .byte, or .string pseudo-ops.

Chapter 3. Syntax and Semantics 35

../../libs/basetrf1/atof.htm#HDRA1299EC9

The syntax of string constants consists of any number of characters enclosed in ″″ (double quotation
marks):
"any number of characters"

To use a ″ in a string constant, use double quotation marks twice. For example:
"a double quote character is specified like this "" "

Operators

All operators evaluate from left to right except for the unary operators, which evaluate from right to left.

The assembler provides the following unary operators:

+ unary positive
- unary negative
x one’s complement (unary)

The assembler provides the following binary operators:

* multiplication
/ division
> right shift
< left shift
| bitwise inclusive or
& bitwise AND
| bitwise exclusive or
+ addition
- subtraction

Parentheses can be used in expressions to change the order in which the assembler evaluates the
expression. Operations within parentheses are performed before operations outside parentheses. Where
nested parentheses are involved, processing starts with the innermost set of parentheses and proceeds
outward.

Operator Precedence
Operator precedence for 32-bit expressions is shown in the following figure.

Table 1.

Highest Priority

| ()
| unary -, unary +, x
| * / < >
| | | &
| + _
V

Lowest Priority

In 32-bit mode, all the operators perform 32-bit signed integer operations. In 64-bit mode, all computations
are performed using 64-bit signed integer operations.

The division operator produces an integer result; the remainder has the same sign as the dividend. For
example:

36 Assembler Language Reference

Operation Result Remainder

8/3 2 2

8/-3 -2 2

(-8)/3 -2 -2

(-8)/(-3) 2 -2

The left shift (<) and right shift (>) operators take an integer bit value for the right-hand operand. For
example:
.set mydata,1

.set newdata,mydata<2
Shifts 1 left 2 bits.
Assigns the result to newdata.

Related Information
“Character Set” on page 27

“Reserved Words” on page 27

“Line Format” on page 28

“Statements” on page 28

“Symbols” on page 30

“Constants” on page 33

“Expressions”

The atof subroutine.

The .comm pseudo-op, .csect pseudo-op, .double pseudo-op, .dsect pseudo-op, .float pseudo-op,
.lcomm pseudo-op, .tc pseudo-op, .toc pseudo-op, .tocof pseudo-op.

Expressions

A term is the smallest element that the assembler parser can recognize when processing an expression.
Each term has a value and a type. An expression is formed by one or more terms. The assembler
evaluates each expression into a single value, and uses that value as an operand. Each expression also
has a type. If an expression is formed by one term, the expression has the same type as the type of the
term. If an expression consists of more than one term, the type is determined by the expression handler
according to certain rules applied to all the types of terms contained in the expression. Expression types
are important because:

v Some pseudo-ops and instructions require expressions with a particular type.

v Only certain operators are allowed in certain types of expressions.

Object Mode Considerations
AIX 4.3 adds an additional aspect to assemly language expressions: that of the object mode and
relocation vs. the size of the data value being calculated. In 32-bit mode, relocation is applied to 32-bit
quantities; expressions resulting in a requirement for relocation (for example, a reference to an external
symbol) can not have their value stored in any storage area other than a word. As the 4.3 assembler has
added the .llong pseudo-op, it is worthwhile to point out that expressions used to initialize the contents of

Chapter 3. Syntax and Semantics 37

../../libs/basetrf1/atof.htm#HDRA1299EC9

a .llong may not require relocation. In 64-bit mode, relocation is applied to double-word quantities. Thus,
expression results that require relocation can not have their value stored in a location smaller than a
double-word.

Arithmetic evaluations of expressions in 32-bit mode is consistent with the behavior found in prior releases
of the assembler. Integer constants are considered to be 32-bit quantities, and the calculations are 32-bit
calculations. In 64-bit mode constants are 64-bit values, and expressions are evaluated using 64-bit
calculations.

Types and Values of Terms
The following is a list of all the types of terms and an abbreviated name for each type:

v Absolute (E_ABS)

v Relocatable (E_REL)

v External relocatable (E_EXT)

v TOC-relative relocatable (E_TREL)

v TOCOF relocatable (E_TOCOF)

Absolute Terms
A term is absolute if its value does not change upon program relocation. In other words, a term is absolute
if its value is independent of any possible code relocation operation.

An absolute term is one of the following items:

v A constant (including all the kinds of constants defined in Constants).

v A symbol set to an absolute expression.

The value of an absolute term is the constant value.

Relocatable Terms
A term is relocatable if its value changes upon program relocation. The value of a relocatable term
depends on the location of the control section containing it. If the control section moves to a different
storage location (for example, a csect is relocated by the binder at bind time), the value of the relocatable
term changes accordingly.

A relocatable term is one of the following items:

v A label defined within a csect that does not have TD or TC as its Storage Mapping Class (SMC)

v A symbol set to a relocatable expression

v A label defined within a dsect

v A dsect name

v A location counter reference (which uses $, the dollar sign)

If it is not used as a displacement for a D-form instruction, the value of a csect label or a location counter
reference is its relocatable address, which is the sum of the containing csect address and the offset
relative to the containing csect. If it is used as a displacement for a D-form instruction, the assembler
implicitly subtracts the containing csect address so that only the the offset is used for the displacement. A
csect address is the offset relative to the beginning of the first csect of the file.

A dsect is a reference control section that allows you to describe the layout of data in a storage area
without actually reserving any storage. A dsect provides a symbolic format that is empty of data. The
assembler does assign location counter values to the labels that are defined in a dsect. The values are the
offsets relative to the beginning of the dsect. The data in a dsect at run time can be referenced
symbolically by using the labels defined in a dsect.

38 Assembler Language Reference

Relocatable terms based on a dsect location counter (either the dsect name or dsect labels) are
meaningful only in the context of a .using statement. Since this is the only way to associate a base
address with a dsect, the addressability of the dsect is established in combination with the storage area.

A relocatable term may be based on any control section, either csect or dsect, in all the contexts except if
it is used as a relocatable address constant. If a csect label is used as an address constant, it represents
a relocatable address, and its value is the offset relative to the csect plus the address of the csect. A dsect
label cannot be used as a relocatable address constant since a dsect is only a data template and has no
address.

If two dsect labels are defined in the same dsect, their difference can be used as an absolute address
constant.

External Relocatable Terms
A term is external relocatable (E_EXT) if it is an external symbol (a symbol not defined, but declared within
the current module, or defined in the current module and globally visible), a csect name, or a TOC entry
name.

This term is relocatable because its value will change if it, or its containing control section, is relocated.

An external relocatable term or expression cannot be used as the operand of a .set pseudo-op.

An external relocatable term is one of the following items:

v A symbol defined with the .comm pseudo-op

v A symbol defined with the .lcomm pseudo-op

v A csect name

v A symbol declared with the .globl pseudo-op

v A TOC entry name

v An undefined symbol declared with the .extern pseudo-op

Except for the undefined symbol, if this term is not used as a displacement for a D-form instruction, its
value is its relocatable address, which is the offset relative to the begining of the first csect in the file. If it
is used as a displacement for a D-form instruction, the assembler implicitly subtracts the containing csect
address (except for a TOC entry name), usually producing a zero displacement because the csect address
is subtracted from itself. If a TOC entry name is used as a displacement for a D-form instruction, the
assembler implicitly subtracts the address of the TOC anchor, so the offset relative to the TOC anchor is
the displacement.

An undefined symbol cannot be used as a displacement for a D-form instruction. In other cases, its value
is zero.

TOC-Relative Relocatable Terms
A term is TOC-relative relocatable (E_TREL) if it is a label contained within the TOC.

This type of term is relocatable since its value will change if the TOC is relocated.

A TOC-relative relocatable term is one of the following items:

v A label on a .tc pseudo-op

v A label defined within a csect that has TD or TC as its storage mapping class.

If this term is not used as a displacement for a D-form instruction, its value is its relocatable addresss,
which is the sum of the offset relative to the TOC and the TOC anchor address. If it is used as a
displacement for a D-form instruction, the assembler implicitly subtracts the TOC anchor address, so the
offset relative to the TOC anchor is the displacement.

Chapter 3. Syntax and Semantics 39

TOCOF Relocatable Terms
A term has TOCOF relocatable (E_TOCOF) type if it is the first operand of a .tocof pseudo-op.

This type of term has a value of zero. It cannot be used as a displacement for a D-form instruction. It
cannot participate in any arithmetic operation.

Types and Values of Expressions
Expressions can have all the types that terms can have. An expression with only one term has the same
type as its term. Expressions can also have restricted external relocatable (E_REXT) type, which a term
cannot have because this type requires at least two terms.

Restricted External Relocatable Expressions
An expression has restricted external relocatable (E_REXT) type if it contains two relocatable terms that are
defined in different control sections (terms not meeting the requirements for paired relocatable terms, as
defined in Expression Type of Combined Expressions) and have opposite signs.

The following are examples of combinations of relocatable terms that produce an expression with
restricted external relocatable type:

v <E_EXT> - <E_EXT>

v <E_REL> - <E_REL>

v <E_TREL> - <E_TREL>

v <E_EXT> - <E_REL>

v <E_REL> - <E_EXT>

v <E_EXT> - <E_TREL>

v <E_TREL> - <E_REL>

The value assigned to an expression of this type is based on the results of the assembler arithmetic
evaluation of the values of its terms. When participating in an arithmetic operation, the value of a term is
its relocatable address.

Combination Handling of Expressions
Terms within an expression can be combined with binary operators. Also, a term can begin with one or
more unary operators. The assembler expression handler evaluates and determines the resultant
expression type, value, and relocation table entries.

Expression Value Calculations
The following rules apply when calculating a value:

v If it is participating in an arithmetic operation, the value of an absolute term is its constant value, and
the value of a relocatable term (E_EXT, E_REL, or E_TREL) is its relocatable address.

v If the resultant expression is used as a displacement in a D-form instruction, the assembler implicitly
subtracts the containing csect address from the final result for expressions of type E_EXT or E_REL, or
subtracts the TOC anchor address for expressions of type E_TREL. There is no implicit subtracting for
expressions with E_ABS or E_REXT type.

Object File Relocation Table Entries of Expressions
The assembler applies the following rules when determining the requirements for object file relocation
table entries for an exression.

v When an expression is used in a data definition, TOC entry definition, or a branch target address, it
may require from zero to two relocation table entries (RLDs) depending on the resultant type of the
expression.

– E_ABS requires zero relocation entries.

– E_REL requires one relocation entry, except that a dsect name or a dsect label does not require a
relocation entry.

40 Assembler Language Reference

– E_EXT requires one relocation entry

– E_REXT requires two relocation entries

– E_TREL requires one relocation entry

– E_TOCOF requires one relocation entry

v When an expression is used as a displacement within a D-form instruction operand, only E_TREL and
E_REXT expressions have relocation entries. They each require one relocation entry.

Expression Type of Combined Expressions
The assembler applies the following rules when determining the type of a combined expression.

Combining Expressions with Group 1 Operators: The following operators belong to group #1:

v *, /, >, <, |, &, |

Operators in group #1 have the following rules:

v <E_ABS> <op1> <E_ABS> ==> E_ABS

v Applying an operator in group #1 to any type of expression other than an absolute expression produces
an error.

Combining Expressions with Group 2 Operators: The following operators belong to group # 2:

v +, -

Operators in group # 2 have the following rules:

v <E_ABS> <op2> <E_ABS> ==> E_ABS

v <E_ABS> <op2> <E_REXT> ==> E_REXT

v <E_REXT> <op2> <E_ABS> ==> E_REXT

v <E_ABS> <op2> <E_TOCOF> ==> an error

v <E_TOCOF> <op2> <E_ABS> ==> an error

v <non E_ABS> <op2> <E_REXT> ==> an error

v <E_REXT> <op2> < non E_ABS> ==> an error

v <E_ABS> - <E_TREL> ==> an error

v Unary + and - are treated the same as the binary operators with absolute value 0 (zero) as the left
term.

v Other situations where one of the terms is not an absolute expression require more complex rules.

The following definitions will be used in later discussion:

paired relocatable terms Have opposite signs and are defined in the same section. The value represented by
paired relocatable terms is absolute. The result type for paired relocatable terms is
E_ABS. Paired relocatable terms are not required to be contiguous in an expression.Two
relocatable terms cannot be paired if they are not defined in the same section. A
E_TREL term can be paired with another E_TREL term or E_EXT term, but cannot be
paired with a E_REL term (because they will never be in the same section). A E_EXT or
E_REL term can be paired with another E_EXT or E_REL term. A E_REXT term cannot be
paired with any term.

opposite terms Have opposite signs and point to the same symbol table entry. Any term can have its
opposite term. The value represented by opposite terms is zero. The result type for
opposite terms is almost identical to E_ABS, except that a relocation table entry (RLD)
with a type R_REF is generated when it is used for data definition. Opposite terms are
not required to be contiguous in an expression.

The main difference between opposite terms and paired relocatable terms is that paired relocatable terms
do not have to point to the same table entry, although they must be defined in the same section.

Chapter 3. Syntax and Semantics 41

In the following example L1 and -L1 are opposite terms ; and L1 and -L2 are paired relocatable terms.
.file "f1.s"
.csect Dummy[PR]

L1: ai 10, 20, 30
L2: ai 11, 21, 30

br
.csect A[RW]
.long L1 - L1
.long L1 - L2

The following table shows rules for determining the type of complex combined expressions:

Type Conditions for Expression to have Type Relocation Table Entries

E_ABS All the terms of the expression are paired
relocatable terms, opposite terms, and absolute
terms.

An RLD with type R_REF is generated for each
opposite term.

E_REXT The expression contains two unpaired
relocatable terms with opposite signs in addition
to all the paired relocatable terms, opposite
terms, and absolute terms.

Two RLDs, one with a type of R_POS and one
with a type of R_NEG, are generated for the
unpaired relocatable terms. In addition, an RLD
with a type of R_REF is generated for each
opposite term.

E_REL, E_EXT The expression contains only one unpaired
E_REL or E_RXT term in addition to all the paired
relocatable terms, opposite terms, and absolute
terms.

If the expression is used in a data definition, one
RLD with type R_POS or R_NEG will be
generated. In addition, an RLD with type R_REF
is generated for each opposite term.

E_TREL The expression contains only one unpaired
E_TREL term in addition to all the paired
relocatable terms, opposite terms, and absolute
terms.

If the expression is used as a displacement in a
D-form instruction, one RLD with type R_TOC
will be generated, otherwise one RLD with type
R_POS or R_NEG will be generated. In addition,
an RLD with type R_REF is generated for each
opposite term.

Error If the expression contains more than two
unpaired relocatable terms, or it contains two
unpaired relocatable terms with the same sign,
an error is reported.

The following example illustrates the preceding table:
.file "f1.s"
.csect A[PR]

L1: ai 10, 20, 30
L2: ai 10, 20, 30
EL1: l 10, 20(20)

.extern EL1

.extern EL2
EL2: l 10, 20(20)

.csect B[PR]
BL1: l 10, 20(20)
BL2: l 10, 20(20)

ba 16 + EL2 - L2 + L1 # Result is E_REL
l 10, 16+EL2-L2+L1(20) # No RLD
.csect C[RW]

BL3: .long BL2 - B[PR] # Result is E_ABS
.long BL2 - (L1 - L1) # Result is E_REL
.long 14-(-EL2+BL1) + BL1 - (L2-L1) # Result is E_REL
.long 14 + EL2 - BL1 - L2 + L1 # Result is E_REL
.long (B[PR] -A[PR]) + 32 # Result is E_REXT

42 Assembler Language Reference

Related Information
The atof subroutine.

The .comm pseudo-op, .csect pseudo-op, .double pseudo-op, .dsect pseudo-op, .float pseudo-op,
.lcomm pseudo-op, .tc pseudo-op, .toc pseudo-op, .tocof pseudo-op.

Chapter 3. Syntax and Semantics 43

../../libs/basetrf1/atof.htm#HDRA1299EC9

44 Assembler Language Reference

Chapter 4. Addressing

The addressing articles discuss addressing modes and addressing considerations, including:

v Absolute Addressing

v Absolute Immediate Addressing

v Relative Immediate Addressing

v Explicit-Based Addressing

v Implicit-Based Addressing

v Location Counter

Absolute Addressing

An absolute address is represented by the contents of a register. This addressing mode is absolute in the
sense that it is not specified relative to the current instruction address.

Both the Branch Conditional to Link Register instructions and the Branch Conditional to Count Register
instructions use an absolute addressing mode. The target address is a specific register, not an input
operand. The target register is the Link Register (LR) for the Branch Conditional to Link Register
instructions. The target register is the Count Register (CR) for the Branch Conditional to Count Register
instructions. These registers must be loaded prior to execution of the branch conditional to register
instruction.

Absolute Immediate Addressing

An absolute immediate address is designated by immediate data. This addressing mode is absolute in the
sense that it is not specified relative to the current instruction address.

For Branch and Branch Conditional instructions, an absolute immediate addressing mode is used if the
Absolute Address bit (AA bit) is on.

The operand for the immediate data can be an absolute, relocatable, or external expression.

Relative Immediate Addressing

Relative immediate addresses are specified as immediate data within the object code and are calculated
relative to the current instruction location. All the instructions that use relative immediate addressing are
branch instructions. These instructions have immediate data that is the displacement in fullwords from the
current instruction location. At execution, the immediate data is sign extended, logically shifted to the left
two bits, and added to the address of the branch instruction to calculate the branch target address. The
immediate data must be a relocatable expression or an external expression.

Explicit-Based Addressing

Explicit-based addresses are specified as a base register number, RA, and a displacement, D. The base
register holds a base address. At run time, the processor adds the displacement to the contents of the
base register to obtain the effective address. If an instruction does not have an operand form of D(RA),
then the instruction cannot have an explicit-based address. Error 159 is reported if the D(RA) form is used
for these instructions.

© Copyright IBM Corp. 1997, 2001 45

A displacement can be an absolute expression, a relocatable expression, a restricted external expression,
or a TOC-relative expression. A displacement can be an external expression only if it is a csect (control
section) name or the name of a common block specified defined by a .comm pseudo-op.

Notes:

1. An externalized label is still relocatable, so an externalized label can also be used as a
displacement.

2. When a relocatable expression is used for the displacement, no RLD entry is generated, because
only the offset from the label (that is, the relocatable expression) for the csect is used for the
displacement.

Although programmers must use an absolute expression to specify the base register itself, the contents of
the base register can be specified by an absolute, a relocatable, or an external expression. If the base
register holds a relocatable value, the effective address is relocatable. If the base register holds an
absolute value, the effective address is absolute. If the base register holds a value specified by an external
expression, the type of the effective address is absolute if the expression is eventually defined as
absolute, or relocatable if the expression is eventually defined as relocatable.

When using explicit-based addressing, remember that:

v GPR 0 cannot be used as a base register. Specifying 0 tells the assembler not to use a base register at
all.

v Because D occupies a maximum of 16 bits, a displacement must be in the range -2**15 to (2**15)-1.
Therefore, the difference between the base address and the address of the item to which reference is
made must be less than 2**15 bytes.

Note: D and RA are required for the D(RA) form. The form 0(RA) or D(0) may be used, but both
the D and RA operands are required. There are two exceptions:

– When D is an absolute expression,

– When D is a restricted external expression.

If the RA operand is missing in these two cases, D(0) is assumed.

Implicit-Based Addressing

An implicit-based address is specified as an operand for an instruction by omitting the RA operand and
writing the .using pseudo-op at some point before the instruction. After assembling the appropriate .using
and .drop pseudo-ops, the assembler can determine which register to use as the base register. At run
time, the processor computes the effective address just as if the base were explicitly specified in the
instruction.

Implicit-based addresses can be relocatable or absolute, depending on the type of expression used to
specify the contents of the RA operand at run time. Usually, the contents of the RA operand are specified
with a relocatable expression, thus making a relocatable implicit-based address. In this case, when the
object module produced by the assembler is relocated, only the contents of the base register RA will
change. The displacement remains the same, so D(RA) still points to the correct address after relocation.

A dsect is a reference control section that allows you to describe the layout of data in a storage area
without actually reserving any storage. An implicit-based address can also be made by specifying the
contents of RA with a dsect name or a a dsect label, thus associating a base with a dummy section. The
value of the RA content is resolved at run time when the dsect is instantiated.

If the contents of the RA operand are specified with an absolute expression, an absolute implicit-based
address is made. In this case, the contents of the RA will not change when the object module is relocated.

46 Assembler Language Reference

The assembler only supports relocatable implicit-based addressing.

Perform the following when using implicit-based addressing:

1. Write a .using statement to tell the assembler that one or more general-purpose registers (GPRs) will
now be used as base registers.

2. In this .using statement, tell the assembler the value each base register will contain at execution. Until
it encounters a .drop pseudo-op, the assembler will use this base register value to process all
instructions that require a based address.

3. Load each base register with the previously specified value.

For implicit-based addressing the RA operand is always omitted, but the D operand remains. The D
operand can be an absolute expression, a TOC-relative expression, a relocatable expression, or a
restricted external expression.

Notes:

1. When the D operand is an absolute expression or a restricted external expression, the assembler
always converts it to D(0) form, so the .using pseudo-op has no effect.

2. The .using and .drop pseudo-ops affect only based addresses.
.toc
T.data: .tc data[tc],data[rw]
.csect data[rw]

foo: .long 2,3,4,5,6
bar: .long 777

.csect text[pr]

.align 2
l 10,T.data(2) # Loads the address of

csect data[rw] into GPR 10.

.using data[rw], 10 # Specify displacement.
l 3,foo # The assembler generates l 3,0(10)
l 4,foo+4 # The assembler generates l 4,4(10)
l 5,bar # The assembler generates l 5,20(10)

See the .using pseudo-op for more information.

Location Counter

Each section of an assembler language program has a location counter used to assign storage addresses
to your program’s statements. As the instructions of a source module are being assembled, the location
counter keeps track of the current location in storage. You can use a $ (dollar sign) as an operand to an
instruction to refer to the current value of the location counter.

Related Information
Branch Processor .

The bcctr or bcc (Branch Conditional to Count Register) instruction, bclr or bcr (Branch Conditional Link
Register) instruction, b (Branch) Instruction, bc (Branch Conditional) instruction.

The .using pseudo-op, .drop pseudo-op.

Chapter 4. Addressing 47

48 Assembler Language Reference

Chapter 5. Assembling and Linking a Program

This section provides information on the following:

v Assembling and Linking a Program

v Understanding Assembler Passes

v Interpreting an Assembler Listing

v Interpreting a Symbol Cross-Reference

v Subroutine Linkage Convention

v Understanding and Programming the TOC

v Running a Program

Assembling and Linking a Program

Assembly language programs can be assembled with the as command or the cc command. The ld
command or the cc command can be used to link assembled programs. This section discusses the
following:

v Assembling with the as Command

v Assembling and Linking with the cc Command

Assembling with the as Command

The as command invokes the assembler. The syntax for the as command is:

as [-a Mode] [-o ObjectFile] [-n Name] [-u] [-l [ListFile]] [-W | -w] [-x [XCrossFile]] [
-s [ListFile]] [-m ModeName] [File]

The as command reads and assembles the file specified by the File parameter. By convention, this file has
a suffix of .s. If no file is specified, the as command reads and assembles standard input. By default, the
as command stores its output in a file named a.out. The output is stored in the XCOFF file format.

All flags for the as command are optional.

The ld command is used to link object files. See the ld command for more information.

The assembler respects the setting of the OBJECT_MODE environment variable. If neither -a32 or -a64 is
used, the environment is examined for this variable. If the value of the variable is anything other than the
values listed in the following table, an error message is generated and the assembler exits with a non-zero
return code. The implied behavior corresponding to the valid settings are as follows:

OBJECT_MODE=32 Produce 32-bit object code. The default machine setting is com.

OBJECT_MODE=64 Produce 64-bit object code (XCOFF64 files). The default machine
setting is ppc64.

OBJECT_MODE=32_64 Invalid.

OBJECT_MODE=anything else Invalid.

© Copyright IBM Corp. 1997, 2001 49

../../cmds/aixcmds1/as.htm#HDRD2E0SHAD
../../files/aixfiles/XCOFF.htm
../../cmds/aixcmds3/ld.htm#HDRA09493AC

as Command Flags

The following flags are recognized by the as command:

-a Mode Specifies the mode in which the as command operates. By default, the as command operates in
32-bit mode, but the mode can be explicitly set by using the flag -a32 for 32-bit mode operation
or -a64 for 64-bit mode operation.

-o ObjectFile Writes the output of the assembly process to the specified file instead of to the a.out file.
-n Name Specifies the name that appears in the header of the assembler listing. By default, the header

contains the name of the assembler source file.
-l[ListFile] Produces an assembler listing. If you do not specify a file name, a default name is produced by

replacing the suffix extension of the source file name with a .lst extension. (By convention, the
source file suffix is a .s.) For example:

sourcefile.xyz

produces a default name of:

sourcefile.lst

If the source code is from standard input and the -l flag is used without specifying an
assembler-listing file name, the listing file name is a.lst.

-s[ListFile] Indicates whether or not a mnemonics cross-reference for POWER family and PowerPC is
included in the assembler listing. If this flag is omitted, no mnemonics cross-reference is
produced. If this flag is used, the assembler listing will have POWER family mnemonics if the
source contains PowerPC mnemonics, and will have PowerPC mnemonics if the source contains
POWER family mnemonics.

The mnemonics cross-reference is restricted to instructions that have different mnemonics in
POWER family and PowerPC, but that have the same op code, function, and input operand
format.

Because the -s flag is used to change the assembler-listing format, it implies the -l flag. If both
option flags are used and different assembler-listing file names (specified by the ListFile variable)
are given, the listing file name specified by the ListFile variable used with the -l flag is used. If an
assembler-listing file name is not specified with either the -l or -s flag, a default assembler listing
file name is produced by replacing the suffix extension of the source file name with a .lst
extension.

-u Accepts an undefined symbol as an extern so that an error message is not displayed. Otherwise,
undefined symbols are flagged with error messages.

-W Turns off all warning message reporting, including the instructional warning messages (the
POWER family and PowerPC incompatibility warnings).

-w Turns on warning message reporting, including reporting of instructional warning messages (the
POWER family and PowerPC incompatibility warnings).

Note: When neither -W nor -w is specified, the instructional warnings are reported, but other warnings are
suppressed.

-x[XCrossFile] Produces cross-reference output. If you do not specify a file name, a default name is produced
by replacing the suffix extension of the source file name with an .xref extension. By convention,
the suffix is a .s. For example:

sourcefile.xyz

produces a default name of:

sourcefile.xref

Note: The assembler does not generate an object file when the -x flag is used.

50 Assembler Language Reference

-m ModeName Indicates the assembly mode. This flag has lower priority than the .machine pseudo-op.

If this flag is not used and no .machine pseudo-op is present in the source program, the default
assembly mode is used. The default assembly mode has the POWER family/PowerPC
intersection as the target environment, but treats all POWER family/PowerPC incompatibility
errors (including instructions outside the POWER family/PowerPC intersection and invalid form
errors) as instructional warnings.

If an assembly mode that is not valid is specified and no .machine pseudo-op is present in the
source program, an error is reported and the default assembly mode is used for instruction
validation in pass 1 of the assembler.

If the -m flag is used, the ModeName variable can specify one of the following values:

″″ Explicitly specifies the default assembly mode which has the POWER family/PowerPC
intersection as the target environment, but treats instructions outside the POWER
family/PowerPC intersection and invalid form errors as instructional warnings. A space is
required between -m and the null string argument (two double quotation marks).

com Specifies the POWER family/PowerPC intersection mode. A source program can contain
only instructions that are common to both POWER family and PowerPC; any other
instruction causes an error. Any instruction with an invalid form causes errors, terminates
the assembly process, and results in no object code being generated.

Note:Certain POWER family instructions are supported by the PowerPC 601 RISC
Microprocessor, but do not conform to the PowerPC architecture. These
instructions cause errors when using the com assembly mode.

ppc Specifies the PowerPC mode. A source program can contain only PowerPC instructions.
Any other instruction causes an error.

Notes:

1. The PowerPC optional instructions are not implemented in every PowerPC
processor and do not belong to the ppc mode. These instructions generate an
error if they appear in a source program which is assembled using the ppc
assembly mode.

2. Certain instructions conform to the PowerPC architecture, but are not
supported by the PowerPC 601 RISC Microprocessor.

ppc64 Specifies the PowerPC 64-bit mode. A source program can contain 64-bit PowerPC
instructions.

any Specifies the indiscriminate mode. The assembler generates object code for any
recognized instruction, regardless of architecture. This mode is used primarily for
operating system development and for testing and debugging purposes.

Note:All POWER family/PowerPC incompatibility errors are ignored when using
the any assembly mode, and no warnings are generated.

pwr Specifies the POWER family mode. A source program can contain only instructions for
the POWER family implementation of the POWER family architecture.

Chapter 5. Assembling and Linking a Program 51

pwr2(pwrx)
Specifies the POWER2 mode. A source program can contain only instructions for the
POWER2 implementation of the POWER family architecture. pwr2 is the preferred
value. The alternate assembly mode value pwrx means the same thing as pwr2.

Note:The POWER family implementation instruction set is a subset of the
POWER2 implementation instruction set.

601 Specifies the PowerPC 601 RISC Microprocessor mode. A source program can contain
only instructions for the PowerPC 601 RISC Microprocessor.

Note:The PowerPC 601 RISC Microprocessor design was completed before the
PowerPC architecture. Therefore, some PowerPC instructions may not be
supported by the PowerPC 601 RISC Microprocessor.

Attention:It is recommended that the 601 assembly mode not be used for
applications that are intended to be portable to future PowerPC systems. The com
or ppc assembly mode should be used for such applications.

The PowerPC 601 RISC Microprocessor implements the PowerPC architecture plus
some POWER family instructions which are not included in the PowerPC architecture.
This allows existing POWER family applications to run with acceptable performance on
PowerPC systems. Future PowerPC systems will not have this feature. The 601
assembly mode may result in applications that will not run on existing POWER family
systems and that may not have acceptable performance on future PowerPC systems,
because the 601 assembly mode permits the use of all the instructions provided by the
PowerPC 601 RISC Microprocessor.

603 Specifies the PowerPC 603 RISC Microprocessor mode. A source program can contain
only instructions for the PowerPC 603 RISC Microprocessor.

604 Specifies the PowerPC 604 RISC Microprocessor mode. A source program can contain
only instructions for the PowerPC 604 RISC Microprocessor.

A35 Specifies the A35 mode. A source program can contain only instructions for the A35.
File Specifies the source file. If no file is specified, the source code is taken from standard input.

Assembling and Linking with the cc Command

The cc command can be used to assemble and link an assembly source program. The following example
links object files compiled or assembled with the cc command:
cc pgm.o subs1.o subs2.o

When the cc command is used to link object files, the object files should have the suffix of .o as in the
previous example.

When the cc command is used to assemble and link source files, any assembler source files must have
the suffix of .s. The cc command invokes the assembler for any files having this suffix. Option flags for the
as command can be directed to the assembler through the cc command. The syntax is:
-Wa,Option1,Option2,...

The following example invokes the assembler to assemble the source program using the com assembly
mode, and produces an assembler listing and an object file:
cc -c -Wa,-mcom,-l file.s

The cc command invokes the assembler and then continues processing normally. Therefore:
cc -Wa,-l,-oXfile.o file.s

52 Assembler Language Reference

../../cmds/aixcmds1/as.htm#HDRD2E0SHAD

will fail because the object file produced by the assembler is named Xfile.o, but the linkage editor (ld
command) invoked by the cc command searches for file.o.

If no option flag is specified on the command line, the cc command uses the compiler, assembler, and link
options, as well as the necessary support libraries defined in the xlc.cfg configuration file.

Note: Some option flags defined in the assembler and the linkage editor use the same letters.
Therefore, if the xlc.cfg configuration file is used to define the assembler options (asopt) and the
link-editor options (ldopt), duplicate letters should not occur in asopt and ldopt because the cc
command is unable to distinguish the duplicate letters.

For more information on the option flags passed to the cc command, see the cc command.

Understanding Assembler Passes

When you enter the as command, the assembler makes two passes over the source program.

First Pass
On the first pass, the assembler performs the following tasks:

v Checks to see if the instructions are legal in the current assembly mode.

v Allocates space for instructions and storage areas you request.

v Fills in the values of constants, where possible.

v Builds a symbol table, also called a cross-reference table, and makes an entry in this table for every
symbol it encounters in the label field of a statement.

The assembler reads one line of the source file at a time. If this source statement has a valid symbol in
the label field, the assembler ensures that the symbol has not already been used as a label. If this is the
first time the symbol has been used as a label, the assembler adds the label to the symbol table and
assigns the value of the current location counter to the symbol. If the symbol has already been used as a
label, the assembler returns the error message Redefinition of symbol and reassigns the symbol value.

Next, the assembler examines the instruction’s mnemonic. If the mnemonic is for a machine instruction
that is legal for the current assembly mode, the assembler determines the format of the instruction (for
example, XO format). The assembler then allocates the number of bytes necessary to hold the machine
code for the instruction. The contents of the location counter are incremented by this number of bytes.

When the assembler encounters a comment (preceded by a # (pound sign)) or an end-of-line character,
the assembler starts scanning the next instruction statement. The assembler keeps scanning statements
and building its symbol table until there are no more statements to read.

At the end of the first pass, all the necessary space has been allocated and each symbol defined in the
program has been associated with a location counter value in the symbol table. When there are no more
source statements to read, the second pass starts at the beginning of the program.

Note: If an error is found in the first pass, the assembly process terminates and does not continue to
the second pass. If this occurs, the assembler listing only contains errors and warnings generated
during the first pass of the assembler.

Second Pass
On the second pass, the assembler:

v Examines the operands for symbolic references to storage locations and resolves these symbolic
references using information in the symbol table.

v Ensures that no instructions contain an invalid instruction form.

Chapter 5. Assembling and Linking a Program 53

../../cmds/aixcmds3/ld.htm#HDRA09493AC

v Translates source statements into machine code and constants, thus filling the allocated space with
object code.

v Produces a file containing error messages, if any have occurred.

At the beginning of the second pass, the assembler scans each source statement a second time. As the
assembler translates each instruction, it increments the value contained in the location counter.

If a particular symbol appears in the source code, but is not found in the symbol table, then the symbol
was never defined. That is, the assembler did not encounter the symbol in the label field of any of the
statements scanned during the first pass, or the symbol was never the subject of a .comm, .csect,
.lcomm, .sect, or .set pseudo-op.

This could be either a deliberate external reference or a programmer error, such as misspelling a symbol
name. The assembler indicates an error. All external references must appear in a .extern or .globl
statement.

The assembler logs errors such as incorrect data alignment. However, many alignment problems are
indicated by statements that do not halt assembly. The -w flag must be used to display these warning
messages.

After the programmer corrects assembly errors, the program is ready to be linked.

Note: If only warnings are generated in the first pass, the assembly process continues to the second
pass. The assembler listing contains errors and warnings generated during the second pass of the
assembler. Any warnings generated in the first pass do not appear in the assembler listing.

Interpreting an Assembler Listing

The -l flag of the as command produces a listing of an assembler language file.

Assume that a programmer wants to display the words ″hello, world.″ The C program would appear as
follows:

main ()
{

printf ("hello, world\n");
}

Assembling the hello.s file with the following command:
as -l hello.s

produces an output file named hello.lst. The complete assembler listing for hello.lst is as follows:
hello.s V4.0 01/25/94
File# Line# Mode Name Loc Ctr Object Code Source
0 1 | #############################
0 2 | # C source code
0 3 | #############################
0 4 | # hello()
0 5 | # {
0 6 | # printf("hello,world\n");
0 7 | # }
0 8 | #############################
0 9 | # Compile as follows:
0 10 | # cc -o helloworld hello.s
0 11 | #
0 12 | #############################
0 13 | .file "hello.s"
0 14 | #Static data entry in
0 15 | #T(able)O(f)C(ontents)

54 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTA1369967

0 16 | .toc
0 17 | COM data 00000000 00000040 T.data: .tc data[tc],data[rw]
0 18 | .globl main[ds]
0 19 | #main[ds] contains definitions for
0 20 | #runtime linkage of function main
0 21 | .csect main[ds]
0 22 | COM main 00000000 00000000 .long .main[PR]
0 23 | COM main 00000004 00000050 .long TOC[tc0]
0 24 | COM main 00000008 00000000 .long 0
0 25 | #Function entry in
0 26 | #T(able)O(f)C(ontents)
0 27 | .toc
0 28 | COM .main 00000000 00000034 T.hello: .tc .main[tc],main[ds]
0 29 | .globl .main[PR]
0 30 |
0 31 | #Set routine stack variables
0 32 | #Values are specific to
0 33 | #the current routine and can
0 34 | #vary from routine to routine
0 35 | 00000020 .set argarea, 32
0 36 | 00000018 .set linkarea, 24
0 37 | 00000000 .set locstckarea, 0
0 38 | 00000001 .set ngprs, 1
0 39 | 00000000 .set nfprs, 0
0 40 | 0000003c .set szdsa, 8*nfprs+4*ngprs+linkarea+

argarea+locstckarea
0 41 |
0 42 | #Main routine
0 43 | .csect .main[PR]
0 44 |
0 45 |
0 46 | #PROLOG: Called Routines
0 47 | # Responsibilities
0 48 | #Get link reg.
0 49 | COM .main 00000000 7c0802a6 mflr 0
0 50 | #Not required to Get/Save CR
0 51 | #because current routine does
0 52 | #not alter it.
0 53 |
0 54 | #Not required to Save FPR's
0 55 | #14-31 because current routine
0 56 | #does not alter them.
0 57 |
0 58 | #Save GPR 31.
0 59 | COM .main 00000004 bfe1fffc stm 31, -8*nfprs-4*ngprs(1)
0 60 | #Save LR if non-leaf routine.
0 61 | COM .main 00000008 90010008 st 0, 8(1)
0 62 | #Decrement stack ptr and save
0 63 | #back chain.
0 64 | COM .main 0000000c 9421ffc4 stu 1, -szdsa(1)
0 65 |
0 66 |
0 67 | #Program body
0 68 | #Load static data address
0 69 | COM .main 00000010 81c20000 l 14,T.data(2)
0 70 | #Line 3, file hello.c
0 71 | #Load address of data string
0 72 | #from data addr.
0 73 | #This is a parameter to printf()
0 74 | COM .main 00000014 386e0000 cal 3,_helloworld(14)
0 75 | #Call printf function
0 76 | COM .main 00000018 4bffffe9 bl .printf[PR]
0 77 | COM .main 0000001c 4def7b82 cror 15, 15, 15
0 78 |
0 79 |
0 80 | #EPILOG: Return Sequence
0 81 | #Get saved LR.

Chapter 5. Assembling and Linking a Program 55

0 82 | COM .main 00000020 80010044 l 0, szdsa+8(1)
0 83 |
0 84 | #Routine did not save CR.
0 85 | #Restore of CR not necessary.
0 86 |
0 87 | #Restore stack ptr
0 88 | COM .main 00000024 3021003c ai 1, 1, szdsa
0 89 | #Restore GPR 31.
0 90 | COM .main 00000028 bbe1fffc lm 31, -8*nfprs-4*ngprs(1)
0 91 |
0 92 | #Routine did not save FPR's.
0 93 | #Restore of FPR's not necessary.
0 94 |
0 95 | #Move return address
0 96 | #to Link Register.
0 97 | COM .main 0000002c 7c0803a6 mtlr0
0 98 | #Return to address
0 99 | #held in Link Register.
0 100 | COM .main 00000030 4e800021 brl
0 101 |
0 102 |
0 103 | #External variables
0 104 | .extern.printf[PR]
0 105 |
0 106 | ##############################
0 107 | #Data
0 108 | ##############################
0 109 | #String data placed in
0 110 | #static csect data[rw]
0 111 | .csect data[rw]
0 112 | .align2
0 113 | _helloworld:
0 114 | COM data 00000000 68656c6c .byte 0x68,0x65,0x6c,0x6c
0 115 | COM data 00000004 6f2c776f .byte 0x6f,0x2c,0x77,0x6f
0 116 | COM data 00000008 726c640a .byte 0x72,0x6c,0x64,0xa,0x0

| COM data 0000000c 00

The first line of the assembler listing gives two pieces of information:

v Name of the source file (in this case, hello.s)

v Date the listing file was created (in this case, 03/28/90)

The assembler listing contains several columns. The column headings are:

File# Lists the source file number. Files included with the M4 macro processor (-l option) are
displayed by the number of the file in which the statement was found.

Line# Refers to the line number of the assembler source code.
Mode Indicates the current assembly mode for this instruction.
Name Lists the name of the csect where this line of source code originates.
Loc Ctr Lists the value contained in the assembler’s location counter. The listing shows a location

counter value only for assembler language instructions that generate object code.
Object Code Shows the hexadecimal representation of the object code generated by each line of the

assembler program. Since each instruction is 32 bits, each line in the assembler listing shows a
maximum of 4 bytes. Any remaining bytes in a line of assembler source code are shown on the
following line or lines.

Note: If pass two failed, the assembler listing will not contain object code.
Source Lists the assembler source code for the program. A limit of 100 ASCII characters will be

displayed per line.

If the -s option flag is used on the command line, the assembler listing contains mnemonic cross-reference
information. One new column is added to the assembler listing.

56 Assembler Language Reference

If the assembly mode is in the PowerPC category (com, ppc, or 601), the new column heading is
PowerPC. This column contains the PowerPC mnemonic for each instance where the POWER family
mnemonic is used in the source program. The any assembly mode does not belong to any category, but is
treated as though in the PowerPC category.

If the assembly mode is in the POWER family category (pwr or pwr2), the new column heading is
POWER family. This column contains the POWER family mnemonic for each instance where the PowerPC
mnemonic is used in the source program.

The following assembler listing uses the com assembly mode. The source program uses POWER family
mnemonics. The assembler listing has a PowerPC mnemonic cross-reference.
L_dfmt_1.s V4.0 01/26/94
File# Line# Mode Name Loc Ctr Object Code PowerPC Source
0 1 |
0 2 | #%% -L
0 3 | machine "com"
0 4 | csect dfmt[PR]
0 5 | using data,5
0 6 | COM dfmt 00000000 8025000c lwz l1,d1 # 8025000c
0 7 | COM dfmt 00000004 b8c50018 lmw lm 6,d0 # b8650018
0 8 | COM dfmt 00000008 b0e50040 sth 7,d8 # b0e50040
0 9 | COM dfmt 0000000c 80230020 lwz l 1,0x20(3) # 80230020
0 10 | COM dfmt 00000010 30220003 addic ai 1,2,3 # 30220003
0 11 | COM dfmt 00000014 0cd78300 twi ti 6,23,-32000 # 0cd78300
0 12 | COM dfmt 00000018 2c070af0 cmpi 0,7,2800 # 2c070af0
0 13 | COM dfmt 0000001c 2c070af0 cmpi 0,0,7,2800 # 2c070af0
0 14 | COM dfmt 00000020 30220003 subic si 1,2,-3 # 30220003
0 15 | COM dfmt 00000024 34220003 subic. si. 1,2,-3 # 34220003
0 16 | COM dfmt 00000028 703e00ff andi. andil.30,1,0xFF # 703e00ff
0 17 | COM dfmt 0000002c 2b9401f4 cmpli 7,20,500 # 2b9401f4
0 18 | COM dfmt 00000030 0c2501a4 twlgti tlgti 5,420 # 0c2501a4
0 19 | COM dfmt 00000034 34220003 addic. ai. 1,2,3 # 34220003
0 20 | COM dfmt 00000038 2c9ff380 cmpi 1,31,-3200 # 2c9ff380
0 21 | COM dfmt 0000003c 281f0c80 cmpli 0,31,3200 # 281f0c80
0 22 | COM dfmt 00000040 8ba5000c lbz 29,d1 # 8ba5000c
0 23 | COM dfmt 00000044 85e5000c lwzu lu 15,d1 # 85e5000c
0 24 | COM dfmt 00000048 1df5fec0 mulli muli 15,21,-320 # 1df5fec0
0 25 | COM dfmt 0000004c 62af0140 ori oril 15,21,320 # 62af0140
0 26 | COM dfmt 00000050 91e5000c stw st 15,d1 # 91e5000c
0 27 | COM dfmt 00000054 bde5000c stmw stm 15,d1 # bde5000c
0 28 | COM dfmt 00000058 95e5000c stwu stu 15,d1 # 95e5000c
0 29 | COM dfmt 0000005c 69ef0960 xori xoril 15,15,2400 # 69ef0960
0 30 | COM dfmt 00000060 6d8c0960 xoris xoriu 12,12,2400 # 6d8c0960
0 31 | COM dfmt 00000064 3a9eff38 addi 20,30,-200 # 3a9eff38
0 32 |
0 33 | .csect also[RW]
0 34 | data:
0 35 | COM also 00000000 00000000 .long 0,0,0

| 00000004
| COM also 00000008 00000000

0 36 | COM also 0000000c 00000003 d1:.long 3,4,5 # d1 = 0xC = 12
| COM also 00000010 00000004
| COM also 00000014 00000005

0 37 | COM also 00000018 00000068 d0: .long data # d0 = 0x18 = 24
0 38 | COM also 0000001c 00000000 data2: .space 36

| 00000020
| COM also 0000003c 000000000

39 | COM also 00000040 000023e0 d8: .long 9184 # d8 = 0x40 = 64
0 40 | COM also 00000044 ffffffff d9: .long 0xFFFFFFFF # d9 = 0x44
0 41 | #
0 42 | # 0000 00000000 00000000 00000000 00000003
0 43 | # 0010 00000004 00000005 0000000C 00000000
0 44 | # 0020 00000000 00000000 00000000 00000000
0 45 | # 0030 000023E0

Chapter 5. Assembling and Linking a Program 57

The following assembler listing uses the pwr assembly mode. The source program uses PowerPC
mnemonics. The assembler listing has a POWER family mnemonic cross-reference.
L_dfmt_2.s V4.0 01/26/94

File# Line# Mode Name Loc Ctr Object Code POWER Source
0 1 | #%% -L
0 2 | .machine "pwr"
0 3 | .csect dfmt[PR]
0 4 | .using data,5
0 5 | PWR dfmt 00000000 8025000c l lwz 1,d1
0 6 | PWR dfmt 00000004 b8650018 lm lmw 3,d0
0 7 | PWR dfmt 00000008 b0e50040 sth 7,d8
0 8 | PWR dfmt 0000000c 80230020 l lwz 1,0x20(3)
0 9 | PWR dfmt 00000010 30220003 ai addic 1,2,3
0 10 | PWR dfmt 00000014 0cd78300 ti twi 6,23,-32000
0 11 | PWR dfmt 00000018 2c070af0 cmpi 0,7,2800
0 12 | PWR dfmt 0000001c 2c070af0 cmpi 0,0,7,2800
0 13 | PWR dfmt 00000020 30220003 si subic 1,2,-3
0 14 | PWR dfmt 00000024 34220003 si. subic. 1,2,-3
0 15 | PWR dfmt 00000028 703e00ff andil. andi. 30,1,0xFF
0 16 | PWR dfmt 0000002c 2b9401f4 cmpli 7,20,500
0 17 | PWR dfmt 00000030 0c2501a4 tlgti twlgti 5,420
0 18 | PWR dfmt 00000034 34220003 ai. addic. 1,2,3
0 19 | PWR dfmt 00000038 2c9ff380 cmpi 1,31,-3200
0 20 | PWR dfmt 0000003c 281f0c80 cmpli 0,31,3200
0 21 | PWR dfmt 00000040 8ba5000c lbz 29,d1
0 22 | PWR dfmt 00000044 85e5000c lu lwzu 15,d1
0 23 | PWR dfmt 00000048 1df5fec0 muli mulli 15,21,-320
0 24 | PWR dfmt 0000004c 62af0140 oril ori 15,21,320
0 25 | PWR dfmt 00000050 91e5000c st stw 15,d1
0 26 | PWR dfmt 00000054 bde5000c stm stmw 15,d1
0 27 | PWR dfmt 00000058 95e5000c stu stwu 15,d1
0 28 | PWR dfmt 0000005c 69ef0960 xoril xori 15,15,2400
0 29 | PWR dfmt 00000060 6d8c0960 xoriu xoris 12,12,2400
0 30 | PWR dfmt 00000064 3a9eff38 addi 20,30,-200
0 31 |
0 32 |
0 33 | .csect also[RW]
0 34 | data:
0 35 | PWR also 00000000 00000000 .long 0,0,0

| 00000004
| PWR also 00000008 00000000

0 36 | PWR also 0000000c 00000003 d1: long 3,4,5
| PWR also 00000010 00000004 # d1 = 0xc = 12
| PWR also 00000014 00000005

0 37 | PWR also 00000018 00000068 d0: long data # d0 = 0x18 = 24
0 38 | PWR also 0000001c 00000000 data2: space 36

| 00000020
| PWR also 0000003c 00000000

0 39 | PWR also 00000040 000023e0 d8: long 9184 # d8 = 0x40 = 64
0 40 | PWR also 00000044 ffffffff d9: long 0xFFFFFFFF # d9 = 0x44
0 41 | #
0 42 | # 0000 00000000 00000000 00000000 00000003
0 43 | # 0010 00000004 00000005 0000000C 00000000
0 44 | # 0020 00000000 00000000 00000000 00000000
0 45 | # 0030 000023E0

Interpreting a Symbol Cross-Reference

The following is an example of the symbol cross-reference for the hello.s assembly program:
Symbol File CSECT Line #

.main hello.s -- 22

.main hello.s .main 28 *

.main hello.s -- 29

.main hello.s .main 43 *

58 Assembler Language Reference

.printf hello.s -- 76

.printf hello.s -- 104
T.data hello.s data 17 *
T.data hello.s data 69
T.hello hello.s .main 28 *
TOC hello.s TOC 23
_helloworld hello.s -- 74
_helloworld hello.s data 113 *
argarea hello.s -- 35 *
argarea hello.s -- 40
data hello.s -- 17
data hello.s data 17 *
data hello.s data 111 *
linkarea hello.s -- 36 *
linkarea hello.s -- 40
locstckarea hello.s -- 37 *
locstckarea hello.s -- 40
main hello.s -- 18
main hello.s main 21 *
main hello.s main 28
nfprs hello.s -- 39 *
nfprs hello.s -- 40
nfprs hello.s -- 59
nfprs hello.s -- 90
ngprs hello.s -- 38 *
ngprs hello.s -- 40
ngprs hello.s -- 59
ngprs hello.s -- 90
szdsa hello.s -- 40 *
szdsa hello.s -- 64
szdsa hello.s -- 82
szdsa hello.s -- 88

The first column lists the symbol names that appear in the source program. The second column lists the
source file name in which the symbols are located. The third column lists the csect names in which the
symbols are defined or located.

In the column listing the csect names, a — (double dash) means one of the following:

v The symbol’s csect has not been defined yet. In the example, the first and third .main (.main[PR]) is
defined through line 42.

v The symbol is an external symbol. In the example, .printf is an external symbol and, therefore, is not
associated with any csect.

v The symbol to be defined is a symbolic constant. When the .set pseudo-op is used to define a symbol,
the symbol is a symbolic constant and does not have a csect associated with it. In the example,
argarea, linkarea, locstckarea, nfprs, ngprs, and szdsa are symbolic constants.

The fourth column lists the line number in which the symbol is located. An * (asterisk) after the line number
indicates that the symbol is defined in this line. If there is no asterisk after the line number, the symbol is
referenced in the line.

Subroutine Linkage Convention

This article discusses the following:

v Linkage Convention Overview

v Calling Routine’s Responsibilities

v Called Routine’s Responsibilities

v Using Milicode Routines

Chapter 5. Assembling and Linking a Program 59

Linkage Convention Overview
The subroutine linkage convention describes the machine state at subroutine entry and exit. When
followed, this scheme allows routines compiled separately in the same or different languages to be linked
and executed when called.

The linkage convention allows for parameter passing and return values to be in floating-point registers
(FPRs), general-purpose registers (GPRs), or both.

Object Mode Considerations
For AIX 4.3, the following discussion applies to both 32-bit mode and 64-bit mode with the following notes:

v General purpose registers in 64-bit mode are 64 bits wide (double- word). This implies that space usage
of the stack increases by a factor of two for register storage. Wherever, below, the term word is used,
assume (unless otherwise stated) that the size of the object in question is 1 word in 32-bit mode, and 2
words (a double-word) in 64-bit mode.

v The offsets shown in the run-time stack figure should be doubled for 64-bit mode. In 32-bit mode, the
stack as shown requires 56 bytes:

– 1 word for each of the 6 registers CR, LR, compiler-reserved, linker-reserved, and saved-TOC.

– 8 words for the 8 volatile registers.

This totals 14 words, or 56 bytes. In 64-bit mode, each field is twice as large (a double-word), thus
requiring 28 words, or 112 bytes.

v Floating point registers are saved in the same format in both modes. The storage requirements are the
same.

v Stack pointer alignment requirements remain the same for both modes.

v The GPR save routine listed below illustrates the methodology for saving registers in 32-bit mode. For
64-bit mode, the offsets from GPR1, the stack pointer register, would be twice the values shown.
Additionally, the load instruction used would be ld and the store instuction would be stdu.

Register Usage and Conventions

The PowerPC 32-bit architecture has 32 GPRs and 32 FPRs. Each GPR is 32 bits wide, and each FPR is
64 bits wide. There are also special registers for branching, exception handling, and other purposes. The
General-Purpose Register Convention table shows how GPRs are used.

General-Purpose Register Conventions

Register Status Use

GPR0 volatile In function prologs.

GPR1 dedicated Stack pointer.

GPR2 dedicated Table of Contents (TOC) pointer.

GPR3 volatile First word of a function’s argument list; first word of a scalar function return.

GPR4 volatile Second word of a function’s argument list; second word of a scalar function
return.

GPR5 volatile Third word of a function’s argument list.

GPR6 volatile Fourth word of a function’s argument list.

GPR7 volatile Fifth word of a function’s argument list.

GPR8 volatile Sixth word of a function’s argument list.

GPR9 volatile Seventh word of a function’s argument list.

GPR10 volatile Eighth word of a function’s argument list.

GPR11 volatile In calls by pointer and as an environment pointer for languages that require
it (for example, PASCAL).

60 Assembler Language Reference

GPR12 volatile For special exception handling required by certain languages and in glink
code.

GPR13 reserved Reserved under 64-bit environment; not restored across system calls.

GPR14:GPR31 nonvolatile These registers must be preserved across a function call.

The preferred method of using GPRs is to use the volatile registers first. Next, use the nonvolatile registers
in descending order, starting with GPR31 and proceeding down to GPR14. GPR1 and GPR2 must be
dedicated as stack and Table of Contents (TOC) area pointers, respectively. GPR1 and GPR2 must
appear to be saved across a call, and must have the same values at return as when the call was made.

Volatile registers are scratch registers presumed to be destroyed across a call and are, therefore, not
saved by the callee. Volatile registers are also used for specific purposes as shown in the previous table.
Nonvolatile and dedicated registers are required to be saved and restored if altered and, thus, are
guaranteed to retain their values across a function call.

The Floating-Point Register Conventions table shows how the FPRs are used.

Floating-Point Register Conventions

Register Status Use

FPR0 volatile As a scratch register.

FPR1 volatile First floating-point parameter; first 8 bytes of a floating-point scalar return.

FPR2 volatile Second floating-point parameter; second 8 bytes of a floating-point scalar
return.

FPR3 volatile Third floating-point parameter; third 8 bytes of a floating-point scalar return.

FPR4 volatile Fourth floating-point parameter; fourth 8 bytes of a floating-point scalar
return.

FPR5 volatile Fifth floating-point parameter.

FPR6 volatile Sixth floating-point parameter.

FPR7 volatile Seventh floating-point parameter.

FPR8 volatile Eighth floating-point parameter.

FPR9 volatile Ninth floating-point parameter.

FPR10 volatile Tenth floating-point parameter.

FPR11 volatile Eleventh floating-point parameter.

FPR12 volatile Twelfth floating-point parameter.

FPR13 volatile Thirteenth floating-point parameter.

FPR14:FPR31 nonvolatile If modified, must be preserved across a call.

The preferred method of using FPRs is to use the volatile registers first. Next, the nonvolatile registers are
used in descending order, starting with FPR31 and proceeding down to FPR14.

Only scalars are returned in multiple registers. The number of registers required depends on the size and
type of the scalar. For floating-point values, the following results occur:

v A 128-bit floating-point value returns the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2.

v An 8-byte or 16-byte complex value returns the real part in FPR1 and the imaginary part in FPR2.

v A 32-byte complex value returns the real part as a 128-bit floating-point value in FPR1 and FPR2, with
the high-order 64 bits in FPR1 and the low-order 64 bits in FPR2. The imaginary part of a 32-byte
complex value returns the high-order 64 bits in FPR3 and the low-order 64 bits in FPR4.

Chapter 5. Assembling and Linking a Program 61

Special Registers in the PowerPC
The Special-Purpose Register Conventions table shows the PowerPC special purpose registers (SPRs).
These are the only SPRs for which there is a register convention.

Special-Purpose Register Conventions

Register or Register
Field

Status Use

LR volatile Used as a branch target address or holds a return address.

CTR volatile Used for loop count decrement and branching.

XER volatile Fixed-point exception register.

FPSCR volatile Floating-point exception register.

CR0, CR1 volatile Condition-register bits.

CR2, CR3, CR4 nonvolatile Condition-register bits.

CR5, CR6, CR7 volatile Condition-register bits.

Routines that alter CR2, CR3, and CR4 must save and restore at least these fields of the CR. Use of
other CR fields does not require saving or restoring.

Run-Time Process Stack

The stack format convention is designed to enhance the efficiency of the following:

v Prolog and epilog function usage

v Parameter passing

v Shared library support

The Run-Time Stack figure illustrates the run-time stack. It shows the stack after the sender function calls
the catcher function, but before the catcher function calls another function. This figure is based on the
assumption that the catcher function will call another function. Therefore, the catcher function requires
another link area (as described in the stack layout). PWn refers to the nth word of parameters that are
passed.

62 Assembler Language Reference

Stack Layout: Only one register, referred to as the stack pointer (SP), is used for addressing the stack,
and GPR1 is the dedicated stack pointer register. It grows from numerically higher storage addresses to
numerically lower addresses.

The Run-Time Stack figure illustrates what happens when the sender function calls the catcher function,
and how the catcher function requires a stack frame of its own. When a function makes no calls and
requires no local storage of its own, no stack frame is required and the SP is not altered.

Notes:

Figure 2. Run-Time Stack

Chapter 5. Assembling and Linking a Program 63

1. To reduce confusion, data being passed from the sender function (the caller) is referred to as
arguments, and the same data being received by the catcher function (the callee) is referred to
as parameters. The output argument area of sender is the same as the input parameter area of
catcher.

2. The address value in the stack pointer must be quadword-aligned. (The address value must be a
multiple of 16.)

Stack Areas: For convenience, the stack layout has been divided into eight areas numbered 1 to 8,
starting from the bottom of the diagram (high address) to the top of the diagram (low address). The
sender’s stack pointer is pointing to the top of area 3 when the call to the catcher function is made, which
is also the same SP value that is used by the catcher function on entry to its prolog. The following is a
description of the stack areas, starting from the bottom of the diagram (area 1) and moving up to the top
(area 8):

v Area 1: Sender’s Local Variable Area

Area 1 is the local variable area for the sender function, contains all local variables and temporary
space required by this function.

v Area 2: Sender’s Output Argument Area

Area 2 is the output argument area for the sender function. This area is at least eight words in size and
must be doubleword-aligned. The first eight words are not used by the caller (the sender function)
because their corresponding values are placed directly in the argument registers (GPR3:GPR10). The
storage is reserved so that if the callee (the catcher function) takes the address of any of its
parameters, the values passed in GPR3:GPR10 can be stored in their address locations (PW1:PW8,
respectively). If the sender function is passing more than eight arguments to the catcher function, then
it must reserve space for the excess parameters. The excess parameters must be stored as register
images beyond the eight reserved words starting at offset 56 from the sender function’s SP value.

Note: This area may also be used by language processors and is volatile across calls to other
functions.

v Area 3: Sender’s Link Area

Area 3 is the link area for the sender function. This area consists of six words and is at offset 0 from
the sender function’s SP at the time the call to the catcher function is made. Certain fields in this area
are used by the catcher function as part of its prolog code, those fields are marked in the Run-Time
Stack figure and are explained below.

The first word is the back chain, the location where the sender function saved its caller’s SP value prior
to modifying the SP. The second word (at offset 4) is where the catcher function can save the CR if it
modifies any of the nonvolatile CR fields. The third word (offset 8) is where the catcher function can
save the LR if the catcher function makes any calls.

The fourth word is reserved for compilers, and the fifth word is used by binder-generated instructions.
The last word in the link area (offset 20) is where the TOC area register (see Understanding and
Programming the TOC for description) is saved by the global linkage (glink) interface routine. This
occurs when an out-of-module call is performed, such as when a shared library function is called.

v Area 4: Catcher’s Floating-Point Registers Save Area

Area 4 is the floating-point register save area for the callee (the catcher function) and is
doubleword-aligned. It represents the space needed to save all the nonvolatile FPRs used by the called
program (the catcher function). The FPRs are saved immediately above the link area (at a lower
address) at a negative displacement from the sender function’s SP. The size of this area varies from
zero to a maximum of 144 bytes, depending on the number of FPRs being saved (maximum number is
18 FPRs * 8 bytes each).

v Area 5: Catcher’s General-Purpose Registers Save Area

Area 5 is the general-purpose register save area for the catcher function and is at least word-aligned. It
represents the space needed by the called program (the catcher function) to save all the nonvolatile
GPRs. The GPRs are saved immediately above the FPR save area (at a lower address) at a negative

64 Assembler Language Reference

displacement from the sender function’s SP. The size of this area varies from zero to a maximum of 76
bytes, depending on the number of GPRs being saved (maximum number is 19 GPRs * 4 bytes each).

Notes:

1. A stackless leaf procedure makes no calls and requires no local variable area, but it may use
nonvolatile GPRs and FPRs.

2. The save area consists of the FPR save area (4) and the GPR save area (5), which have a
combined maximum size of 220 bytes. The stack floor of the currently executing function is
located at 220 bytes less than the value in the SP. The area between the value in the SP and
the stack floor is the maximum save area that a stackless leaf function may use without
acquiring its own stack. Functions may use this area as temporary space which is volatile
across calls to other functions. Execution elements such as interrupt handlers and
binder-inserted code, which cannot be seen by compiled codes as calls, must not use this
area.

The system-defined stack floor includes the maximum possible save area. The formula for the size of
the save area is:
18*8
(for FPRs)
+ 19*4
(for GPRs)
= 220

v Area 6: Catcher’s Local Variable Area

Area 6 is the local variable area for the catcher function and contains local variables and temporary
space required by this function. The catcher function addresses this area using its own SP, which
points to the top of area 8, as a base register.

v Area 7: Catcher’s Output Argument Area

Area 7 is the output argument area for the catcher function and is at least eight words in size and must
be doubleword-aligned. The first eight words are not used by the caller (the catcher function), because
their corresponding values are placed directly in the argument registers (GPR3:GPR10). The storage is
reserved so that if the catcher function’s callee takes the address of any of its parameters, then the
values passed in GPR3:GPR10 can be stored in their address locations. If the catcher function is
passing more than eight arguments to its callee (PW1:PW8, respectively), it must reserve space for the
excess parameters. The excess parameters must be stored as register images beyond the eight
reserved words starting at offset 56 from the catcher function’s SP value.

Note: This area can also be used by language processors and is volatile across calls to other
functions.

v Area 8: Catcher’s Link Area

Area 8 is the link area for the catcher function and contains the same fields as those in the sender
function’s link area (area 3).

Stack-Related System Standard

All language processors and assemblers must maintain the stack-related system standard that the SP
must be atomically updated by a single instruction. This ensures that there is no timing window where an
interrupt that would result in the stack pointer being only partially updated can occur.

Note: The examples of program prologs and epilogs show the most efficient way to update the stack
pointer.

Prologs and Epilogs

Prologs and epilogs may be used for functions, including setting the registers on function entry and
restoring the registers on function exit.

Chapter 5. Assembling and Linking a Program 65

No predetermined code sequences representing function prologs and epilogs are dictated. However,
certain operations must be performed under certain conditions. The following diagram shows the stack
frame layout.

A typical function’s execution stack is:

v Prolog action

v Body of function

v Epilog action

The Prolog Actions and Epilog Actions tables show the conditions and actions required for prologs and
epilogs.

Prolog Actions

If: Then:

Any nonvolatile FPRs (FPR14:FPR31) are used Save them in the FPR save area (area 4 in the previous
figure).

Figure 3. Stack Frame Layout

66 Assembler Language Reference

Any nonvolatile GPRs (GPR13:GPR31) are used Save them in the GPR save area (area 5 in the previous
figure).

LR is used for a nonleaf procedure Save the LR at offset eight from the caller function SP.

Any of the nonvolatile condition register (CR) fields are
used.

Save the CR at offset four from the caller function SP.

A new stack frame is required Get a stack frame and decrement the SP by the size of
the frame padded (if necessary) to a multiple of 16 to
acquire a new SP and save caller’s SP at offset 0 from
the new SP.

Note: A leaf function that does not require stack space for local variables and temporaries can save
its caller registers at a negative offset from the caller SP without actually acquiring a stack frame.

Epilog Actions

If: Then:

Any nonvolatile FPRs were saved Restore the FPRs that were used.

Any nonvolatile GPRs were saved Restore the GPRs that were saved.

The LR was altered because a nonleaf procedure was
invoked

Restore LR.

The CR was altered Restore CR.

A new stack was acquired Restore the old SP to the value it had on entry (the
caller’s SP). Return to caller.

While the PowerPC architecture provides both load and store multiple instructions for GPRs, it discourages
their use because their implementation on some machines may not be optimal. In fact, use of the load and
store multiple instructions on some future implementations may be significantly slower than the equivalent
series of single word loads or stores. However, saving many FPRs or GPRs with single load or store
instructions in a function prolog or epilog leads to increased code size. For this reason, the system
environment must provide routines that can be called from a function prolog and epilog that will do the
saving and restoring of the FPRs and GPRs. The interface to these routines, their source code, and some
prolog and epilog code sequences are provided .

As shown in the stack frame layout, the GPR save area is not at a fixed position from either the caller SP
or the callee SP. The FPR save area starts at a fixed position, directly above the SP (lower address) on
entry to that callee, but the position of the GPR save area depends on the number of FPRs saved. Thus, it
is difficult to write a general-purpose GPR-saving function that uses fixed displacements from SP.

If the routine needs to save both GPRs and FPRs, use GPR12 as the pointer for saving and restoring
GPRs. (GPR12 is a volatile register, but does not contain input parameters.) This results in the definition of
multiple-register save and restore routines, each of which saves or restores m FPRs and n GPRs. This is
achieved by executing a bla (Branch and Link Absolute) instruction to specially provided routines
containing multiple entry points (one for each register number), starting from the lowest nonvolatile
register.

Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers greater than 29. It is
more efficient to save a small number of registers in the prolog than it is to call the save and
restore functions.

2. If the LR is not saved or restored in the following code segments, the language processor must
perform the saving and restoring as appropriate.

Chapter 5. Assembling and Linking a Program 67

Language processors must use a proprietary method to conserve the values of nonvolatile registers across
a function call.

Three sets of save and restore routines must be made available by the system environment. These
routines are:

v A pair of routines to save and restore GPRs when FPRs are not being saved and restored.

v A pair of routines to save and restore GPRs when FPRs are being saved and restored.

v A pair of routines to save and restore FPRs.

Saving GPRs Only: For a function that saves and restores n GPRs and no FPRs, the saving can be
done using individual store and load instructions or by calling system-provided routines as shown in the
following example:

Note: The number of registers being saved is n. Sequences such as <32-n> in the following
examples indicate the first register number to be saved and restored. All registers from <32-n> to 31,
inclusive, are saved and restored.

#Following are the prolog/epilog of a function that saves n GPRS #(n>2):
mflr r0 #move LR into GPR0
bla _savegpr0_<32-n> #branch and link to save GPRs
stwu r1,<-frame_size>(r1) #update SP and save caller's SP
... #frame_size is the size of the

#stack frame to be required
<save CR if necessary>
...
... #body of function
...
<reload save CR if necessary>
...
<reload caller's SP into R!> #see note below
ba _restgpr0_<32-n> #restore GPRs and return

Note: The restoring of the calling function SP can be done by either adding the frame_size value to
the current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP.
The first approach is more efficient, but not possible for functions that use the alloca subroutine to
dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are not saved:
_savegpr0_13 stw r13,-76(r1) #save r13
_savegpr0_14 stw r14,-72(r1) #save r14
_savegpr0_15 stw r15,-68(r1) #save r15
_savegpr0_16 stw r16,-64(r1) #save r16
_savegpr0_17 stw r17,-60(r1) #save r17
_savegpr0_18 stw r18,-56(r1) #save r18
_savegpr0_19 stw r19,-52(r1) #save r19
_savegpr0_20 stw r20,-48(r1) #save r20
_savegpr0_21 stw r21,-44(r1) #save r21
_savegpr0_22 stw r22,-40(r1) #save r22
_savegpr0_23 stw r23,-36(r1) #save r23
_savegpr0_24 stw r24,-32(r1) #save r24
_savegpr0_25 stw r25,-28(r1) #save r25
_savegpr0_26 stw r26,-24(r1) #save r26
_savegpr0_27 stw r27,-20(r1) #save r27
_savegpr0_28 stw r28,-16(r1) #save r28
_savegpr0_29 stw r29,-12(r1) #save r29

stw r30,-8(r1) #save r30
stw r31,-4(r1) #save r31
stw r0 , 8(r1) #save LR in

#caller's frame
blr #return

68 Assembler Language Reference

../../libs/basetrf1/malloc.htm#HDRA174921E

Note: This save routine must not be called when GPR30 or GPR31, or both, are the only registers
beings saved. In these cases, the saving and restoring must be done inline.

The following example shows a GPR restore routine when FPRs are not saved:
_restgpr0_13 lwz r13,-76(r1) #restore r13
_restgpr0_14 lwz r14,-72(r1) #restore r14
_restgpr0_15 lwz r15,-68(r1) #restore r15
_restgpr0_16 lwz r16,-64(r1) #restore r16
_restgpr0_17 lwz r17,-60(r1) #restore r17
_restgpr0_18 lwz r18,-56(r1) #restore r18
_restgpr0_19 lwz r19,-52(r1) #restore r19
_restgpr0_20 lwz r20,-48(r1) #restore r20
_restgpr0_21 lwz r21,-44(r1) #restore r21
_restgpr0_22 lwz r22,-40(r1) #restore r22
_restgpr0_23 lwz r23,-36(r1) #restore r23
_restgpr0_24 lwz r24,-32(r1) #restore r24
_restgpr0_25 lwz r25,-28(r1) #restore r25
_restgpr0_26 lwz r26,-24(r1) #restore r26
_restgpr0_27 lwz r27,-20(r1) #restore r27
_restgpr0_28 lwz r28,-16(r1) #restore r28
_restgpr0_29 lwz r0,8(r1) #get return

#address from
#frame

lwz r29,-12(r1) #restore r29
mtlr r0 #move return

#address to LR
lwz r30,-8(r1) #restore r30
lwz r31,-4(r1) #restore r31
blr #return

Note: This restore routine must not be called when GPR30 or GPR31, or both, are the only registers
beings saved. In these cases, the saving and restoring must be done inline.

Saving GPRs and FPRs: For a function that saves and restores n GPRs and m FPRs (n>2 and m>2),
the saving can be done using individual store and load instructions or by calling system-provided routines
as shown in the following example:
#The following example shows the prolog/epilog of a function #which save n GPRs and m FPRs:
mflr r0 #move LR into GPR 0
subi r12,r1,8*m #compute GPR save pointer
bla _savegpr1_<32-n> #branch and link to save GPRs
bla _savefpr_<32-m>
stwu r1,<-frame_size>(r1) #update SP and save caller's SP
...
<save CR if necessary>
...
... #body of function
...
<reload save CR if necessary>
...
<reload caller's SP into r1> #see note below on
subi r12,r1,8*m #compute CPR restore pointer
bla _restgpr1_<32-n> #restore GPRs
ba _restfpr_<32-m> #restore FPRs and return

Note: The calling function SP can be restored by either adding the frame_size value to the current
SP whenever the frame_size is known or by reloading it from offset 0 from the current SP. The first
approach is more efficient, but not possible for functions that use the alloca subroutine to
dynamically allocate stack space.

The following example shows a GPR save routine when FPRs are saved:
_savegpr1_13 stw r13,-76(r12) #save r13
_savegpr1_14 stw r14,-72(r12) #save r14
_savegpr1_15 stw r15,-68(r12) #save r15

Chapter 5. Assembling and Linking a Program 69

../../libs/basetrf1/malloc.htm#HDRA174921E

_savegpr1_16 stw r16,-64(r12) #save r16
_savegpr1_17 stw r17,-60(r12) #save r17
_savegpr1_18 stw r18,-56(r12) #save r18
_savegpr1_19 stw r19,-52(r12) #save r19
_savegpr1_20 stw r20,-48(r12) #save r20
_savegpr1_21 stw r21,-44(r12) #save r21
_savegpr1_22 stw r22,-40(r12) #save r22
_savegpr1_23 stw r23,-36(r12) #save r23
_savegpr1_24 stw r24,-32(r12) #save r24
_savegpr1_25 stw r25,-28(r12) #save r25
_savegpr1_26 stw r26,-24(r12) #save r26
_savegpr1_27 stw r27,-20(r12) #save r27
_savegpr1_28 stw r28,-16(r12) #save r28
_savegpr1_29 stw r29,-12(r12) #save r29

stw r30,-8(r12) #save r30
stw r31,-4(r12) #save r31
blr #return

The following example shows an FPR save routine:
_savefpr_14 stfd f14,-144(r1) #save f14
_savefpr_15 stfd f15,-136(r1) #save f15
_savefpr_16 stfd f16,-128(r1) #save f16
_savefpr_17 stfd f17,-120(r1) #save f17
_savefpr_18 stfd f18,-112(r1) #save f18
_savefpr_19 stfd f19,-104(r1) #save f19
_savefpr_20 stfd f20,-96(r1) #save f20
_savefpr_21 stfd f21,-88(r1) #save f21
_savefpr_22 stfd f22,-80(r1) #save f22
_savefpr_23 stfd f23,-72(r1) #save f23
_savefpr_24 stfd f24,-64(r1) #save f24
_savefpr_25 stfd f25,-56(r1) #save f25
_savefpr_26 stfd f26,-48(r1) #save f26
_savefpr_27 stfd f27,-40(r1) #save f27
_savefpr_28 stfd f28,-32(r1) #save f28
_savefpr_29 stfd f29,-24(r1) #save f29

stfd f30,-16(r1) #save f30
stfd f31,-8(r1) #save f31
stw r0 , 8(r1) #save LR in

#caller's frame
blr #return

The following example shows a GPR restore routine when FPRs are saved:
_restgpr1_13 lwz r13,-76(r12) #restore r13
_restgpr1_14 lwz r14,-72(r12) #restore r14
_restgpr1_15 lwz r15,-68(r12) #restore r15
_restgpr1_16 lwz r16,-64(r12) #restore r16
_restgpr1_17 lwz r17,-60(r12) #restore r17
_restgpr1_18 lwz r18,-56(r12) #restore r18
_restgpr1_19 lwz r19,-52(r12) #restore r19
_restgpr1_20 lwz r20,-48(r12) #restore r20
_restgpr1_21 lwz r21,-44(r12) #restore r21
_restgpr1_22 lwz r22,-40(r12) #restore r22
_restgpr1_23 lwz r23,-36(r12) #restore r23
_restgpr1_24 lwz r24,-32(r12) #restore r24
_restgpr1_25 lwz r25,-28(r12) #restore r25
_restgpr1_26 lwz r26,-24(r12) #restore r26
_restgpr1_27 lwz r27,-20(r12) #restore r27
_restgpr1_28 lwz r28,-16(r12) #restore r28
_restgpr1_29 lwz r29,-12(r12) #restore r29

lwz r30,-8(r12) #restore r30
lwz r31,-4(r12) #restore r31
blr #return

The following example shows an FPR restore routine:

70 Assembler Language Reference

_restfpr_14 lfd r14,-144(r1) #restore r14
_restfpr_15 lfd r15,-136(r1) #restore r15
_restfpr_16 lfd r16,-128(r1) #restore r16
_restfpr_17 lfd r17,-120(r1) #restore r17
_restfpr_18 lfd r18,-112(r1) #restore r18
_restfpr_19 lfd r19,-104(r1) #restore r19
_restfpr_20 lfd r20,-96(r1) #restore r20
_restfpr_21 lfd r21,-88(r1) #restore r21
_restfpr_22 lfd r22,-80(r1) #restore r22
_restfpr_23 lfd r23,-72(r1) #restore r23
_restfpr_24 lfd r24,-64(r1) #restore r24
_restfpr_25 lfd r25,-56(r1) #restore r25
_restfpr_26 lfd r26,-48(r1) #restore r26
_restfpr_27 lfd r27,-40(r1) #restore r27
_restfpr_28 lfd r28,-32(r1) #restore r28
_restfpr_29 lwz r0,8(r1) #get return

#address from
#frame

lfd r29,-24(r1) #restore r29
mtlr r0 #move return

#address to LR
lfd r30,-16(r1) #restore r30
lfd r31,-8(r1) #restore r31
blr #return

Saving FPRs Only: For a function that saves and restores m FPRs (m>2), the saving can be done using
individual store and load instructions or by calling system-provided routines as shown in the following
example:
#The following example shows the prolog/epilog of a function #which saves m FPRs and no GPRs:
mflr r0 #move LR into GPR 0
bla _savefpr_<32-m>
stwu r1,<-frame_size>(r1) #update SP and save caller's SP
...
<save CR if necessary>
...
... #body of function
...
<reload save CR if necessary>
...
<reload caller's SP into r1> #see note below
ba _restfpr_<32-m> #restore FPRs and return

Notes:

1. There are no entry points for saving and restoring GPR and FPR numbers higher than 29. It is
more efficient to save a small number of registers in the prolog than to call the save and restore
functions.

2. The restoring of the calling function SP can be done by either adding the frame_size value to the
current SP whenever frame_size is known, or by reloading it from offset 0 from the current SP.
The first approach is more efficient, but not possible for functions that use the alloca subroutine
to dynamically allocate stack space.

Updating the Stack Pointer: The PowerPC stwu (Store Word with Update) instruction is used for
computing the new SP and saving the back chain. This instruction has a signed 16-bit displacement field
that can represent a maximum signed value of 32,768. A stack frame size greater than 32K bytes requires
two instructions to update the SP, and the update must be done atomically.

The two assembly code examples illustrate how to update the SP in a prolog.

To compute a new SP and save the old SP for stack frames larger than or equal to 32K bytes:

Chapter 5. Assembling and Linking a Program 71

../../libs/basetrf1/malloc.htm#HDRA174921E

addis r12, r0, (<-frame_size> > 16) & 0XFFFF
set r12 to left half of frame size

ori r12, r12 (-frame_size> & 0XFFFF
Add right halfword of frame size

stwux r1, r1, r12 # save old SP and compute new SP

To compute a new SP and save the old SP for stack frames smaller than 32K bytes:
stwu r1, <-frame_size>(r1) #update SP and save caller's SP

Calling Routine’s Responsibilities

When an assembler language program calls another program, the caller should not use the names of the
called program’s commands, functions, or procedures as global assembler language symbols. To avoid
confusion, follow the naming conventions for the language of the called program when you create symbol
names. For example, if you are calling a C language program, be certain you use the naming conventions
for that language.

A called routine has two symbols associated with it: a function descriptor (Name) and an entry point
(.Name). When a call is made to a routine, the compiler branches to the name point directly.

Except for when loading parameters into the proper registers, calls to functions are expanded by compilers
to include an NOP instruction after each branch and link instruction. This extra instruction is modified by
the linkage editor to restore the contents of the TOC register (register 2) on return from an out-of-module
call.

The instruction sequence produced by compilers is:
bl .foo #Branch to foo
cror 31,31,31 #Special NOP 0x4ffffb82

Note: Some compilers produce a cror 15,15,15 (0x4def7b82) instruction. To avoid having to restore
condition register 15 after a call, the linkage editor transforms cror 15,15,15 into cror 31,31,31.
Condition register bit 31 is not preserved across a call and does not have to be restored.

The linkage editor will do one of two things when it sees the bl instruction (in the previous instruction
sequence, on a call to the foo function):

v If the foo function is imported (not in the same executable module), the linkage editor:

– Changes the bl .foo instruction to bl .glink_of_foo (a global linkage routine).

– Inserts the .glink code sequence into the (/usr/lib/glink.o file) module.

– Replaces the NOP cror instruction with an l (load) instruction to restore the TOC register.

The bl .foo instruction sequence is changed to:
bl .glink_of_foo #Branch to global linkage routine for foo
l 2,20(1) #Restore TOC register instruction 0x80410014

v If the foo function is bound in the same executable module as its caller, the linkage editor:

v Changes the bl .glink_of_foo sequence (a global linkage routine) to bl .foo.

v Replaces the restore TOC register instruction with the special NOP cror instruction.

The bl .glink_of_foo instruction sequence is changed to:
bl .foo #Branch to foo
cror 31,31,31 #Special NOP instruction 0x4ffffb82

Note: For any export, the linkage editor inserts the procedure’s descriptor into the module.

72 Assembler Language Reference

Called Routine’s Responsibilities

Prologs and epilogs are used in the called routines. On entry to a routine, the following steps should be
performed:

1. Use some or all of the prolog actions described in the Prolog Actions table .

2. Store the back chain and decrement the stack pointer (SP) by the size of the stack frame.

Note: If a stack overflow occurs, it will be known immediately when the store of the back chain is
completed.

On exit from a procedure, perform the following step:

v Use some or all of the epilog actions described in the Epilog Actions table .

Traceback Tags

Every assembly (compiled) program needs traceback information for the debugger to examine if the
program traps or crashes during execution. This information is in a traceback table at the end of the last
machine instruction in the program and before the program’s constant data.

The traceback table starts with a full word of zeros, X’00000000’, which is not a valid system instruction.
The zeros are followed by 2 words (64 bits) of mandatory information and several words of optional
information, as defined in the /usr/include/sys/debug.h file. Using this traceback information, the
debugger can unwind the CALL chain and search forward from the point where the failure occurred until it
reaches the end of the program (the word of zeros).

In general, the traceback information includes the name of the source language and information about
registers used by the program, such as which general-purpose and floating-point registers were saved.

Example
The following is an example of assembler code called by a C routine:
Call this assembly routine from C routine:
callfile.c:
main()
{
examlinkage();
}
Compile as follows:
cc -o callfile callfile.c examlinkage.s
#

###
On entry to a procedure(callee), all or some of the
following steps should be done:
1. Save the link register at offset 8 from the
stack pointer for non-leaf procedures.
2. If any of the CR bits 8-19(CR2,CR3,CR4) is used
then save the CR at displacement 4 of the current
stack pointer.
3. Save all non-volatile FPRs used by this routine.
If more that three non-volatile FPR are saved,

a call to ._savefn can be used to
save them (n is the number of the first FPR to be
saved).
4. Save all non-volatile GPRs used by this routine
in the caller's GPR SAVE area (negative displacement
from the current stack pointer r1).
5. Store back chain and decrement stack pointer by the
size of the stack frame.
#

Chapter 5. Assembling and Linking a Program 73

On exit from a procedure (callee), all or some of the
following steps should be done:
1. Restore all GPRs saved.
2. Restore stack pointer to value it had on entry.
3. Restore Link Register if this is a non-leaf
procedure.
4. Restore bits 20-31 of the CR is it was saved.
5. Restore all FPRs saved. If any FPRs were saved then
a call to ._savefn can be used to restore them
(n is the first FPR to be restored).
6. Return to caller.

###
The following routine calls printf() to print a string.
The routine performs entry steps 1-5 and exit steps 1-6.
The prolog/epilog code is for small stack frame size.
DSA + 8 < 32k
###

.file "examlinkage.s"
#Static data entry in T(able)O(f)C(ontents)

.toc
T.examlinkage.c: .tc examlinkage.c[tc],examlinkage.c[rw]

.globl examlinkage[ds]
#examlinkage[ds] contains definitions needed for
#runtime linkage of function examlinkage

.csect examlinkage[ds]

.long .examlinkage[PR]

.long TOC[tc0]

.long 0
#Function entry in T(able)O(f)C(ontents)

.toc
T.examlinkage: .tc .examlinkage[tc],examlinkage[ds]
#Main routine

.globl .examlinkage[PR]

.csect .examlinkage[PR]

Set current routine stack variables
These values are specific to the current routine and
can vary from routine to routine

.set argarea, 32

.set linkarea, 24
.set locstckarea, 0
.set nfprs, 18
.set ngprs, 19
.set szdsa,

8*nfprs+4*ngprs+linkarea+argarea+locstckarea
#PROLOG: Called Routines Responsibilities

Get link reg.
mflr 0
Get CR if current routine alters it.
mfcr 12
Save FPRs 14-31.

bl ._savef14
cror 31, 31, 31
Save GPRs 13-31.
stm 13, -8*nfprs-4*ngprs(1)
Save LR if non-leaf routine.
st 0, 8(1)
Save CR if current routine alters it.
st 12, 4(1)

Decrement stack ptr and save back chain.
stu 1, -szdsa(1)

################################

#load static data address
#################################

l 14,T.examlinkage.c(2)

74 Assembler Language Reference

Load string address which is an argument to printf.
cal 3, printing(14)
Call to printf routine
bl .printf[PR]
cror 31, 31, 31

#EPILOG: Return Sequence
Restore stack ptr
ai 1, 1, szdsa
Restore GPRs 13-31.
lm 13, -8*nfprs-4*ngprs(1)
Restore FPRs 14-31.
bl ._restf14
cror 31, 31, 31

Get saved LR.
l 0, 8(1)
Get saved CR if this routine saved it.
l 12, 4(1)
Move return address to link register.
mtlr 0
Restore CR2, CR3, & CR4 of the CR.
mtcrf 0x38,12

Return to address held in Link Register.
brl

.tbtag 0x0,0xc,0x0,0x0,0x0,0x0,0x0,0x0

External variables
.extern ._savef14
.extern ._restf14
.extern .printf[PR]

#################################
Data

#################################
.csect examlinkage.c[rw]
.align 2

printing: .byte 'E,'x,'a,'m,'p,'l,'e,' ,'f,'o,'r,'
.byte 'P,'R,'I,'N,'T,'I,'N,'G

.byte 0xa,0x0

Using Milicode Routines

All of the fixed-point divide instructions, and some of the multiply instructions, are different for POWER
family and PowerPC. To allow programs to run on systems based on either architecture, a set of special
routines is provided by the operating system. These are called milicode routines and contain
machine-dependent and performance-critical functions. Milicode routines are located at fixed addresses in
the kernel segment. These routines can be reached by a bla instruction. All milicode routines use the link
register.

Notes:

1. No unnecessary registers are destroyed. Refer to the definition of each milicode routine for
register usage information.

2. Milicode routines do not alter any floating-point register, count register, or general-purpose
registers (GPRs) 10-12. The link register can be saved in a GPR (for example, GPR 10) if the
call appears in a leaf procedure that does not use nonvolatile GPRs.

3. Milicode routines do not make use of a TOC.

Chapter 5. Assembling and Linking a Program 75

The following milicode routines are available:

__mulh Calculates the high-order 32 bits of the integer product arg1 * arg2.

Input R3 = arg1 (signed integer)

R4 = arg2 (signed integer)

Output R3 = high-order 32 bits of arg1*arg2

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage
GPR3, GPR4

__mull Calculates 64 bits of the integer product arg1 * arg2, returned in two 32-bit registers.

Input R3 = arg1 (signed integer)

R4 = arg2 (signed integer)

Output R3 = high-order 32 bits of arg1*arg2

R4 = low-order 32 bits of arg1*arg2

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage
GPR0, GPR3, GPR4

__divss Calculates the 32-bit quotient and 32-bit remainder of signed integers arg1/arg2. For division by zero
and overflow, the quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (signed integer)

R4 = arg2 (divisor) (signed integer)

Output R3 = quotient of arg1/arg2 (signed integer)

R4 = remainder of arg1/arg2 (signed integer)

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage
GPR0, GPR3, GPR4

__divus Calculated the 32-bit quotient and 32-bit remainder of unsigned integers arg1/arg2. For division by zero
and overflow, the quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (unsigned integer)

R4 = arg2 (divisor) (unsigned integer)

Output R3 = quotient of arg1/arg2 (unsigned integer)

R4 = remainder of arg1/arg2 (unsigned integer)

POWER family Register Usage
GPR0, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage
GPR0, GPR3, GPR4

76 Assembler Language Reference

__quoss Calculates the 32-bit quotient of signed integers arg1/arg2. For division by zero and overflow, the
quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (signed integer)

R4 = arg2 (divisor) (signed integer)

Output R3 = quotient of arg1/arg2 (signed integer)

POWER family Register Usage
GPR3, GPR4, MQ

PowerPC Register Usage
GPR3, GPR4

__quous Calculates the 32-bit quotient of unsigned integers arg1/arg2. For division by zero and overflow, the
quotient and remainder are undefined and may vary by implementation.

Input R3 = arg1 (dividend) (unsigned integer)

R4 = arg2 (divisor) (unsigned integer)

Output R3 = quotient of arg1/arg2 (unsigned integer)

POWER family Register Usage
GPR0, GPR3, GPR4, MQ, CR0 and CR1 of CR

PowerPC Register Usage
GPR3, GPR4

The following example uses the mulh milicode routine in an assembler program:
li R3, -900
li R4, 50000
bla .__mulh
...
.extern .__mulh

Understanding and Programming the TOC

The Table of Contents (TOC) of an XCOFF file is analogous to the table of contents of a book. The TOC is
used to find objects in an XCOFF file. An XCOFF file is composed of sections that contain different types
of data to be used for specific purposes. Some sections can be further subdivided into subsections or
csects. A csect is the smallest replaceable unit of an XCOFF file. At run time, the TOC can contain the
csect locations (and the locations of labels inside of csects).

The three sections that contain csects are:

.text Indicates that this csect contains code or read-only data.

.data Indicates that this csect contains read-write data.

.bss Indicates that this csect contains uninitialized mapped data.

The storage class of the csect determines the section in which the csect is grouped.

The TOC is located in the .data section of an XCOFF object file and is composed of TOC entries. Each
TOC entry is a csect with storage mapping class of TC or TD.

A TOC entry with TD storage mapping class contains scalar data which can be directly accessed from the
TOC. This permits some frequently used global symbols to be accessed directly from the TOC rather than
indirectly through an address pointer csect contained within the TOC. To access scalar data in the TOC,
two pieces of information are required:

v The location of the beginning of the TOC (i.e. the TOC anchor).

Chapter 5. Assembling and Linking a Program 77

../../files/aixfiles/XCOFF.htm

v The offset from the TOC anchor to the specific TOC entry that contains the data.

A TOC entry with TC storage mapping class contains the addresses of other csects or global symbols.
Each entry can contain one or more addresses of csects or global symbols, but putting only one address
in each TOC entry is recommended.

When a program is assembled, the csects are sorted such that the .text csects are written first, followed
by all .data csects except for the TOC. The TOC is written after all the other .data csects. The TOC
entries are relocated, so that the TOC entries with TC storage mapping class contain the csect addresses
after the sort, rather than the csect addresses in the source program.

When an XCOFF module is loaded, TOC entries with TC storage mapping class are relocated again so
that the TOC entires are filled with the real addresses where the csects will reside in memory. To access a
csect in the module, two pieces of information are required:

v The location of the beginning of the TOC.

v The offset from the beginning of the TOC to the specific TOC entry that points to the csect. If a TOC
entry has more than one address, each address can be calculated by adding (0...(n-1))*4 to the offset,
where n is the position of the csect address defined with the .tc pseudo-op.

Using the TOC
To use the TOC, you must follow certain conventions:

v General-Purpose Register 2 always contains a pointer to the TOC.

v All references from the .text section of an assembler program to .data or the .bss sections must occur
via the TOC.

The TOC register (General-Purpose Register 2) is set up by the system when a program is invoked. It
must be maintained by any code written. The TOC register provides module context so that any routines in
the module can access data items.

The second of these conventions allows the .text and .data sections to be easily loaded into different
locations in memory. By following this convention, you can assure that the only parts of the module to
need relocating are the TOC entries.

Accessing Data through the TOC Entry with TC Storage Mapping Class

An external data item is accessed by first getting that item’s address out of the TOC, and then using that
address to get the data. In order to do this, proper relocation information must be provided to access the
correct TOC entry. The .toc and .tc pseudo-ops generate the correct information to access a TOC entry.
The following code shows how to access item a using its TOC entry:

.set RTOC,2

.csect prog1[pr] #prog1 is a csect
#containing instrs.

...
l 5,TCA(RTOC) #Now GPR5 contains the

#address of a[rw].

...

.toc
TCA: .tc a[tc],a[rw] #1st parameter is TOC entry

#name, 2nd is contents of
#TOC entry.

.extern a[rw] #a[rw] is an external symbol.

This same method is used to access a program’s static internal data, which is data that retains its value
over a call, but which can only be accessed by the procedures in the file where the data items are
declared. Following is the C language data having the static attribute:

78 Assembler Language Reference

static int xyz;

This data is given a name determined by convention. In XCOFF, the name is preceded by an underscore:
.csect prog1[pr]
...
l 1,STprog1(RTOC) #Load r1 with the address

#prog1's static data.
...
.csect _prog1[rw] #prog1's static data.

.long 0

...

.toc
STprog1: .tc.prog1[tc],_prog1[rw] #TOC entry with address of

#prog1's static data.

Accessing Data through the TOC entry with TD Storage Mapping Class
A scalar data item can be stored into a TOC entry with TD storage mapping class and retrieved directly
from the TOC entry.

Note: TOC entries with TD storage mapping class should be used only for frequently used scalars. If
the TOC grows too big (either because of many entries or because of large entries) the assembler
may report message 1252-171 indicating an out of range displacement.

The following examples show several ways to store and retrieve a scalar data item as a TOC with TD
storage mapping class. Each example includes C source for a main program, assembler source for one
module, instructions for linking and assembling, and output from running the program.

Example Using .csect Pseudo-op with TD Storage Mapping Class
1. The following is the source for the C main program td1.c:

/* This C module named td1.c */
extern long t_data;
extern void mod_s();
main()
{

mod_s();
printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod1.s:
.file "mod1.s"
.csect .mod_s[PR]
.globl .mod_s[PR]
.set RTOC, 2
l 5, t_data[TD](RTOC) # Now GPR5 contains the

t_data value 0x10
ai 5,5,14
stu 5, t_data[TD](RTOC)
br
.globl t_data[TD]
.toc
.csect t_data[TD] # t_data is a global symbol

that has value of 0x10
using TD csect will put this
data into TOC area

.long 0x10

3. The following commands assemble and compile the source programs into an executable td1:
as -o mod1.o mod1.s
cc -o td1 td1.c mod1.o

4. Running td1 prints the following:
t_data is 30

Chapter 5. Assembling and Linking a Program 79

Example Using .comm Pseudo-op with TD Storage Mapping Class
1. The following is the source for the C main program td2.c:

/* This C module named td2.c */
extern long t_data;
extern void mod_s();
main()
{

t_data = 1234;
mod_s();
printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod2.s:
.file "mod2.s"
.csect .mod_s[PR]
.globl .mod_s[PR]
.set RTOC, 2
l 5, t_data[TD](RTOC) # Now GPR5 contains the

t_data value
ai 5,5,14
stu 5, t_data[TD](RTOC)
br
.toc
.comm t_data[TD],4 # t_data is a global symbol

3. The following commands assemble and compile the source programs into an executable td2:
as -o mod2.o mod2.s
cc -o td2 td2.c mod2.o

4. Running td2 prints the following:
t_data is 1248

Example Using an External TD Symbol
1.

/* This C module named td3.c */
long t_data;
extern void mod_s();
main()
{

t_data = 234;
mod_s();
printf("t_data is %d\n", t_data);

}

2. The following is the assembler source for module mod3.s:
.file "mod3.s"
.csect .mod_s[PR]
.globl .mod_s[PR]
.set RTOC, 2
l 5, t_data[TD](RTOC) # Now GPR5 contains the

t_data value
ai 5,5,14
stu 5, t_data[TD](RTOC)
br
.toc
.extern t_data[TD] # t_data is a external symbol

3. The following commands assemble and compile the source programs into an executable td3:
./as -o mod3.o mod3.s
cc -o td3 td3.c mod3.o

4. Running td3 prints the following:
t_data is 248

80 Assembler Language Reference

Intermodule Calls Using the TOC

Because the only access from the text to the data section is through the TOC, the TOC provides a feature
that allows intermodule calls to be used. As a result, routines can be linked together without resolving all
the addresses or symbols at link time. In other words, a call can be made to a common utility routine
without actually having that routine linked into the same module as the calling routine. In this way, groups
of routines can be made into modules, and the routines in the different groups can call each other, with the
bind time being delayed until load time. In order to use this feature, certain conventions must be followed
when calling a routine that is in another module.

To call a routine in another module, an interface routine (or global linkage routine) is called that switches
context from the current module to the new module. This context switch is easily performed by saving the
TOC pointer to the current module, loading the TOC pointer of the new module, and then branching to the
new routine in the other module. The other routine then returns to the original routine in the original
module, and the original TOC address is loaded into the TOC register.

To make global linkage as transparent as possible, a call can be made to external routines without
specifying the destination module. During bind time, the binder (linkage editor) determines whether to call
global linkage code, and inserts the proper global linkage routine to perform the intermodule call. Global
linkage is controlled by an import list. An import list contains external symbols that are resolved during run
time, either from the system or from the dynamic load of another object file. See the ld command for
information about import lists.

The following example calls a routine that may go through global linkage:
.csect prog1[PR]
...
.extern prog2[PR] #prog2 is an external symbol.
bl .prog2[PR] #call prog2[PR], binder may insert

#global linkage code.
cror 31,31,31 #place holder for instruction to

#restore TOC address.

The following example shows a call through a global linkage routine:
#AIXlinkage register conventions:
R2 TOC
R1 stack pointer
R0, R12 work registers, not preserved
LR Link Register, return address.

.csect .prog1[PR]
bl .prog2[GL] #Branch to global

#linkage code.
l 2,stktoc(1) #Restore TOC address
.toc

prog2: .tc prog2[TC],prog2[DS] #TOC entry:
address of descriptor
for out-of-module
routine

.extern prog2[DS]
##
The following is an example of global linkage code.

.set stktoc,20

.csect .prog2[GL]

.globl .prog2
.prog2: l 12,prog2(2) #Get address of

#out-of-module
#descriptor.

st 2,stktoc(1) #save callers' toc.

Chapter 5. Assembling and Linking a Program 81

../../cmds/aixcmds3/ld.htm#HDRA09493AC

l 0,0(12) #Get its entry address
#from descriptor.

l 2,4(12) #Get its toc from
#descriptor.

mtctr 0 #Put into Count Register.
bctr #Return to entry address

#in Count Register.
#Return is directly to
#original caller.

Running a Program

A program is ready to run when it has been assembled and linked without producing any error messages.
To run a program, first ensure that you have operating system permission to execute the file. Then type
the program’s name at the operating system prompt:
$ progname

By default, any program output goes to standard output. To direct output somewhere other than standard
output, use the operating system shell > (more than symbol) operator.

Run-time errors can be diagnosed by invoking the symbolic debugger with the dbx command. This
symbolic debugger works with any code that adheres to XCOFF format conventions. The dbx command
can be used to debug all compiler- and assembler-generated code.

Related Information
Migrating Source Programs on page .

The as command, cc command, dbx command, ld command.

The b (Branch) instruction, cror (Condition Register OR) instruction.

The .csect pseudo-op, .tbtag pseudo-op, .tc pseudo-op, .toc pseudo-op, .tocof pseudo-op.

82 Assembler Language Reference

../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds1/as.htm#HDRD2E0SHAD
../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds3/ld.htm#HDRA09493AC

Chapter 6. Extended Instruction Mnemonics

The assembler supports a set of extended mnemonics and symbols to simplify assembly language
programming. All extended mnemonics should be in the same assembly mode as their base mnemonics.
Although different extended mnemonics are provided for POWER family and PowerPC, the assembler
generates the same object code for the extended mnemonics if the base mnemonics are in the com
assembly mode. The assembly mode for the extended mnemonics are listed in each extended mnemonics
section. The POWER family and PowerPC extended mnemonics are listed separately in the following
sections for migration purposes:

v Extended Mnemonics of Branch Instructions

v Extended Mnemonics of Condition Register Logical Instructions

v Extended Mnemonics of Fixed-Point Arithmetic Instructions

v Extended Mnemonics of Fixed-Point Compare Instructions

v Extended Mnemonics of Fixed-Point Load Instructions

v Extended Mnemonics of Fixed-Point Logical Instructions

v Extended Mnemonics of Fixed-Point Trap Instructions

v Extended Mnemonic mtcr for Moving to the Condition Register

v Extended Mnemonics of Moving from or to Special-Purpose Registers

v Extended Mnemonics of Fixed-Point Rotate and Shift Instructions

Extended Mnemonics of Branch Instructions

The assembler supports extended mnemonics for Branch Conditional, Branch Conditional to Link Register,
and Branch Conditional to Count Register instructions. Since the base mnemonics for all the Branch
Conditional instructions are in the com assembly mode, all of their extended mnemonics are also in the
com assembly mode.

Note: Support for extended mnemonics for branch prediction is new in the AIX Version 4 assembler.

Extended mnemonics are constructed by incorporating the BO and BI input operand into the mnemonics.

Branch Mnemonics That Incorporate Only the BO Operand
The following tables show the instruction format for extended mnemonics that incorporate only the BO
field. The target address is specified by the target_addr operand. The bit in the condition register for
condition comparison is specified by the BI operand. The value of the BI operand can be specified by an
expression. The CR field number should be multiplied by four to get the correct CR bit, since each CR
field has four bits.

Note: Some extended mnemonics have two input operand formats.

POWER family Extended Mnemonics (BO Field Only)

Mnemonics Input Operands Equivalent to

bdz, bdza, bdzl, bdzla target_addr bc, bca, bcl, bcla 18, 0, target_addr

bdn, bdna, bdnl, bdnla target_addr bc, bca, bcl, bcla 16, 0, target_addr

bdzr, bdzrl None bcr, bcrl 18, 0

bdnr, bdnrl None bcr, bcrl 16, 0

bbt, bbta, bbtl, bbtla 1) BI, target_addr bc, bca, bcl, bcla 12, BI, target_addr

2) target_addr 12, 0, target_addr

© Copyright IBM Corp. 1997, 2001 83

bbf, bbfa, bbfl, bbfla 1) BI, target_addr bc, bca, bcl, bcla 4, BI, target_addr

2) target_addr 4, 0, target_addr

bbtr, bbtc, bbtrl, bbtcl 1) BI bcr, bcc, bcrl, bccl 12, BI

2) None 12, 0

bbfr, bbfc, bbfrl, bbfcl 1) BI bcr, bcc, bcrl, bccl 4, BI

2) None 4, 0

br, bctr, brl, bctrl None bcr, bcc, bcrl, bccl 20, 0

PowerPC Extended Mnemonics (BO Field Only)

Mnemonics Input Operands Equivalent to

bdz, bdza, bdzl, bdzla target_addr bc, bca, bcl, bcla 18, 0, target_addr

bdnz, bdnza, bdnzl, bdnzla target_addr bc, bca, bcl, bcla 16, 0, target_addr

bdzlr, bdzlrl None bclr, bclrl 18, 0

bdnzlr, bdnzlrl None bclr, bclrl 16, 0

bt, bta, btl, btla 1) BI, target_addr bc, bca, bcl, bcla 12, BI, target_addr

2) target_addr 12, 0, target_addr

bf, bfa, bfl, bfla 1) BI, target_addr bc, bca, bcl, bcla 4, BI, target_addr

2) target_addr 4, 0, target_addr

bdzt, bdzta, bdztl, bdztla 1) BI, target_addr bc, bca, bcl, bcla 10, BI, target_addr

2) target_addr 10, 0, target_addr

bdzf, bdzfa, bdzfl, bdzfla 1) BI, target_addr bc, bca, bcl, bcla 2, BI, target_addr

2) target_addr 2, 0, target_addr

bdnzt, bdnzta, bdnztl, bdnztla 1) BI, target_addr bc, bca, bcl, bcla 8, BI, target_addr

2) target_addr 8, 0, target_addr

bdnzf, bdnzfa, bdnzfl, bdnzfla 1) BI, target_addr bc, bca, bcl, bcla 0, BI, target_addr

2) target_addr 0, 0, target_addr

btlr, btctr, btlrl, btctrl 1) BI bclr, bcctr, bclrl, bcctrl 12, BI

2) None 12, 0

bflr, bfctr, bflrl, bfctrl 1) BI bclr, bcctr, bclrl, bcctrl 4, BI

2) None 4, 0

bdztlr, bdztlrl 1) BI bclr, bclrl 10, BI

2) None 10, 0

bdzflr, bdzflrl 1) BI bclr, bclrl 2, BI

2) None 2, 0

bdnztlr, bdnztlrl 1) BI bclr, bclrl 8, BI

2) None 8, 0

bdnzflr, bdnzflrl 1) BI bclr, bclrl 0, BI

2) None 0, 0

blr, bctr, blrl, bctrl None bclr, bcctr, bclrl, bcctrl 20, 0

84 Assembler Language Reference

Extended Branch Mnemonics That Incorporate the BO Field and a
Partial BI Field
When the BO field and a partial BI field are incorporated, the instruction format is one of the following:

v mnemonic BIF, target_addr

v mnemonic target_addr

where the BIF operand specifies the CR field number (0-7) and the target_addr operand specifies the
target address. If CR0 is used, the BIF operand can be omitted.

Based on the bits definition in the CR field, the following set of codes has been defined for the most
common combinations of branch conditions:

Branch Code Meaning
lt less than *
eq equal to *
gt greater than *
so summary overflow *
le less than or equal to * (not greater than)
ge greater than or equal to * (not less than)
ne not equal to *
ns not summary overflow *
nl not less than
ng not greater than
z zero
nu not unordered (after floating-point comparison)
nz not zero
un unordered (after floating-point comparison)

The assembler supports six encoding values for the BO operand:

v Branch if condition true (BO=12):

POWER familyPowerPC
bxx bxx
bxxa bxxa
bxxl bxxl
bxxla bxxla
bxxr bxxlr
bxxrl bxxlrl
bxxc bxxctr
bxxcl bxxctrl

where xx specifies a BI operand branch code of lt, gt, eq, so, z, or un.

v Branch if condition false (BO=04):

POWER familyPowerPC
bxx bxx
bxxa bxxa
bxxl bxxl
bxxla bxxla
bxxr bxxlr
bxxrl bxxlrl
bxxc bxxctr
bxxcl bxxctrl

Chapter 6. Extended Instruction Mnemonics 85

where xx specifies a BI operand branch code of ge, le, ne, ns, nl, ng, nz, or nu.

v Decrement CTR, then branch if CTR is nonzero and condition is true (BO=08):

– bdnxx

where xx specifies a BI operand branch code of lt, gt, eq, or so (marked by an * (asterisk) in the
Branch Code list).

v Decrement CTR, then branch if CTR is nonzero and condition is false (BO=00):

– bdnxx

where xx specifies a BI operand branch code of le, ge, ne, or ns (marked by an * (asterisk) in the
Branch Code list).

v Decrement CTR, then branch if CTR is zero and condition is true (BO=10):

– bdzxx

where xx specifies a BI operand branch code of lt, gt, eq, or so (marked by an * (asterisk) in the
Branch Code list).

v Decrement CTR, then branch if CTR is zero and condition is false (BO=02):

– bdzxx

where xx specifies a BI operand branch code of le, ge, ne, or ns (marked by an * (asterisk) in the
Branch Code list).

BI Operand of Branch Conditional Instructions for Basic and Extended
Mnemonics
The BI operand specifies a bit (0:31) in the Condition Register for condition comparison. The bit is set by a
compare instruction. The bits in the Condition Register are grouped into eight 4-bit fields. These fields are
named CR field 0 through CR field 7 (CR0...CR7). The bits of each field are interpreted as follows:

Bit Description
0 Less than; floating-point less than
1 Greater than; floating-point greater than
2 Equal; floating-point equal
3 Summary overflow; floating-point unordered

Normally the symbols shown in the BI Operand Symbols for Basic and Extended Branch Conditional
Mnemonics table are defined for use in BI operands. The assembler supports expressions for the BI
operands. The expression is a combination of values and the following symbols.

BI Operand Symbols for Basic and Extended Branch Conditional Mnemonics

Symbol Value Meaning

lt 0 less than

gt 1 greater than

eq 2 equal

so 3 summary overflow

un 3 unordered (after floating-point
comparison)

cr0 0 CR field 0

cr1 1 CR field 1

cr2 2 CR field 2

86 Assembler Language Reference

cr3 3 CR field 3

cr4 4 CR field 4

cr5 5 CR field 5

cr6 6 CR field 6

cr7 7 CR field 7

When using an expression for the BI field in the basic or extended mnemonics with only the BO field
incorporated, the CR field number should be multiplied by 4 to get the correct CR bit, since each CR field
has four bits.

1. To decrement CTR, then branch only if CTR is not zero and condition in CR5 is equal:
bdnzt 4*cr5+eq, target_addr

This is equivalent to:
bc 8, 22, target_addr

2. To decrement CTR, then branch only if CTR is not zero and condition in CR0 is equal:
bdnzt eq, target_addr

This is equivalent to:
bc 8, 2, target_addr

If the BI operand specifies Bit 0 of CR0, the BI operand can be omitted.

3. To decrement CTR, then branch only if CTR is zero:
bdz target_addr

This is equivalent to:
bc 18, 0, target_addr

For extended mnemonics with the BO field and a partial BI field incorporated, the value of the BI operand
indicates the CR field number. Valid values are 0-7. If a value of 0 is used, the BI operand can be omitted.

1. To branch if CR0 reflects a condition of not less than:
bge target_addr

This is equivalent to:
bc 4, 0, target_addr

2. To branch to an absolute target if CR4 indicates greater than, and set the Link register:
bgtla cr4, target_addr

This is equivalent to:
bcla 12, 17, target_addr

The BI operand CR4 is internally expanded to 16 by the assembler. After the gt (greater than) is
incorporated, the result of the BI field is 17.

Extended Mnemonics for Branch Prediction

If the likely outcome (branch or fall through) of a given Branch Conditional instruction is known, the
programmer can include this information in the assembler source program by adding a branch prediction
suffix to the mnemonic of the instruction. The assembler uses the branch prediction information to
determine the value of a bit in the machine instruction. Using a branch prediction suffix may improve the
average performance of a Branch Conditional instruction.

Chapter 6. Extended Instruction Mnemonics 87

The following suffixes can be added to any Branch Conditional mnemonic, either basic or extended:

+ Predict branch to be taken
- Predict branch not to be taken (fall through)

The branch prediction suffix should be placed immediately after the rest of the mnemonic (with no
separator character). A separator character (space or tab) should be used between the branch prediction
suffix and the operands.

If no branch prediction suffix is included in the mnemonic, the assembler uses the following default
assumptions in constructing the machine instruction:

v For relative or absolute branches (bc[l][a]) with negative displacement fields, the branch is predicted to
be taken.

v For relative or absolute branches (bc[l][a]) with nonnegative displacement fields, the branch is
predicted not to be taken (fall through predicted).

v For branches to an address in the LR or CTR (bclr[l]) or (bcctr[l]), the branch is predicted not to be
taken (fall through predicted).

The portion of the machine instruction which is controlled by the branch prediction suffix is the y bit of the
BO field. The y bit is set as follows:

v Specifying no branch prediction suffix, or using the suffix which is the same as the default assumption
causes the y bit to be set to 0.

v Specifying a branch prediction suffix which is the opposite of the default assumption causes the y bit to
be set to 1.

The following examples illustrate use of branch prediction suffixes:

1. Branch if CR0 reflects condition less than. Executing the instruction will usually result in branching.
blt+ target

2. Branch if CRO reflects condition less than. Target address is in the Link Register. Executing the
instruction will usually result in falling through to the next instruction.
bltlr-

The following is a complete list of all the Branch Prediction instructions that are supported by the
assembler in AIX Version 4:

bc+ bc- bca+ bca-
bcctr+ bcctr- bcctrl+ bcctrl-
bcl+ bcl- bcla+ bcla-
bclr+ bclr- bclrl+ bclrl-
bdneq+ bdneq- bdnge+ bdnge-
bdngt+ bdngt- bdnle+ bdnle-
bdnlt+ bdnlt- bdnne+ bdnne-
bdnns+ bdnns- bdnso+ bdnso-
bdnz+ bdnz- bdnza+ bdnza-
bdnzf+ bdnzf- bdnzfa+ bdnzfa-
bdnzfl+ bdnzfl- bdnzfla+ bdnzfla-
bdnzflr+ bdnzflr- bdnzflrl+ bdnzflrl-
bdnzl+ bdnzl- bdnzla+ bdnzla-
bdnzlr+ bdnzlr- bdnzlrl+ bdnzlrl-
bdnzt+ bdnzt- bdnzta+ bdnzta-
bdnztl+ bdnztl- bdnztla+ bdnztla-
bdnztlr+ bdnztlr- bdnztlrl+ bdnztlrl-
bdz+ bdz- bdza+ bdza-
bdzeq+ bdzeq- bdzf+ bdzf-
bdzfa+ bdzfa- bdzfl+ bdzfl-
bdzfla+ bdzfla- bdzflr+ bdzflr-
bdzflrl+ bdzflrl- bdzge+ bdzge-
bdzgt+ bdzgt- bdzl+ bdzl-

88 Assembler Language Reference

bdzla+ bdzla- bdzle+ bdzle-
bdzlr+ bdzlr- bdzlrl+ bdzlrl-
bdzlt+ bdzlt- bdzne+ bdzne-
bdzns+ bdzns- bdzso+ bdzso-
bdzt+ bdzt- bdzta+ bdzta-
bdztl+ bdztl- bdztla+ bdztla-
bdztlr+ bdztlr- bdztlrl+ bdztlrl-
beq+ beq- beqa+ beqa-
beqctr+ beqctr- beqctrl+ beqctrl-
beql+ beql- beqla+ beqla-
beqlr+ beqlr- beqlrl+ beqlrl-
bf+ bf- bfa+ bfa-
bfctr+ bfctr- bfctrl+ bfctrl-
bfl+ bfl- bfla+ bfla-
bflr+ bflr- bflrl+ bflrl-
bge+ bge- bgea+ bgea-
bgectr+ bgectr- bgectrl+ bgectrl-
bgel+ bgel- bgela+ bgela-
bgelr+ bgelr- bgelrl+ bgelrl-
bgt+ bgt- bgta+ bgta-
bgtctr+ bgtctr- bgtctrl+ bgtctrl-
bgtl+ bgtl- bgtla+ bgtla-
bgtlr+ bgtlr- bgtlrl+ bgtlrl-
ble+ ble- blea+ blea-
blectr+ blectr- blectrl+ blectrl-
blel+ blel- blela+ blela-
blelr+ blelr- blelrl+ blelrl-
blt+ blt- blta+ blta-
bltctr+ bltctr- bltctrl+ bltctrl-
bltl+ bltl- bltla+ bltla-
bltlr+ bltlr- bltlrl+ bltlrl-
bne+ bne- bnea+ bnea-
bnectr+ bnectr- bnectrl+ bnectrl-
bnel+ bnel- bnela+ bnela-
bnelr+ bnelr- bnelrl+ bnelrl-
bng+ bng- bnga+ bnga-
bngctr+ bngctr- bngctrl+ bngctrl-
bngl+ bngl- bngla+ bngla-
bnglr+ bnglr- bnglrl+ bnglrl-
bnl+ bnl- bnla+ bnla-
bnlctr+ bnlctr- bnlctrl+ bnlctrl-
bnll+ bnll- bnlla+ bnlla-
bnllr+ bnllr- bnllrl+ bnllrl-
bns+ bns- bnsa+ bnsa-
bnsctr+ bnsctr- bnsctrl+ bnsctrl-
bnsl+ bnsl- bnsla+ bnsla-
bnslr+ bnslr- bnslrl+ bnslrl-
bnu+ bnu- bnua+ bnua-
bnuctr+ bnuctr- bnuctrl+ bnuctrl-
bnul+ bnul- bnula+ bnula-
bnulr+ bnulr- bnulrl+ bnulrl-
bnz+ bnz- bnza+ bnza-
bnzctr+ bnzctr- bnzctrl+ bnzctrl-
bnzl+ bnzl- bnzla+ bnzla-
bnzlr+ bnzlr- bnzlrl+ bnzlrl-
bso+ bso- bsoa+ bsoa-
bsoctr+ bsoctr- bsoctrl+ bsoctrl-
bsol+ bsol- bsola+ bsola-
bsolr+ bsolr- bsolrl+ bsolrl-
bt+ bt- bta+ bta-
btctr+ btctr- btctrl+ btctrl-
btl+ btl- btla+ btla-
btlr+ btlr- btlrl+ btlrl-
bun+ bun- buna+ buna-
bunctr+ bunctr- bunctrl+ bunctrl-
bunl+ bunl- bunla+ bunla-
bunlr+ bunlr- bunlrl+ bunlrl-

Chapter 6. Extended Instruction Mnemonics 89

bz+ bz- bza+ bza-
bzctr+ bzctr- bzctrl+ bzctrl-
bzl+ bzl- bzla+ bzla-
bzlr+ bzlr- bzlrl+ bzlrl-

Extended Mnemonics of Condition Register Logical Instructions

Extended mnemonics of condition register logical instructions are available in POWER family and
PowerPC. These extended mnemonics are in the com assembly mode. Condition register logical
instructions can be used to perform the following operations on a given condition register bit.

v Set bit to 1.

v Clear bit to 0.

v Copy bit.

v Invert bit.

The extended mnemonics shown in the following table allow these operations to be easily coded.

Condition Register Logical Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

crset bx creqv bx, bx, bx Condition register set

crclr bx crxor bx, bx, bx Condition register clear

crmove bx, by cror bx, by, by Condition register move

crnot bx, by crnor bx, by, by Condition register NOT

Since the condition register logical instructions perform the operation on the condition register bit, the
assembler supports expressions in all input operands. When using a symbol name to indicate a condition
register (CR) field, the symbol name should be multiplied by four to get the correct CR bit, because each
CR field has four bits.

Examples
1. To clear the SO bit (bit 3) of CR0:

crclr so

This is equivalent to:
crxor 3, 3, 3

2. To clear the EQ bit of CR3:
crclr 4*cr3+eq

This is equivalent to:
crxor 14, 14, 14

3. To invert the EQ bit of CR4 and place the result in the SO bit of CR5:
crnot 4*cr5+so, 4*cr4+eq

This is equivalent to:
crnor 23, 18, 18

Related Information
Extended Instruction Mnemonics Overview.

Extended Mnemonics of Branch Instructions.

90 Assembler Language Reference

Extended Mnemonics of Fixed-Point Arithmetic Instructions.

Extended Mnemonics of Fixed-Point Compare Instructions.

Extended Mnemonics of Fixed-Point Load Instructions.

Extended Mnemonics of Fixed-Point Logical Instructions.

Extended Mnemonics of Fixed-Point Trap Instructions.

Extended Mnemonics of Moving from or to Special-Purpose Registers.

Extended Mnemonics of Fixed-Point Rotate and Shift Instructions.

The creqv (Condition Register Equivalent) instruction, cror (Condition Register OR) instruction, crnor
(Condition Register NOR) instruction, crxor (Condition Register XOR) instruction.

Extended Mnemonics of Fixed-Point Arithmetic Instructions

The following table shows the extended mnemonics for fixed-point arithmetic instructions for POWER
family and PowerPC. Except as noted, these extended mnemonics are for POWER family and PowerPC
and are in the com assembly mode.

Fixed-Point Arithmetic Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

subi rx, ry, value addi rx, ry, -value Subtract Immediate

subis rx, ry, value addis rx, ry, -value Subtract Immediate Shifted

subic[.] rx, ry, value addic[.] rx, ry, -value Subtract Immediate

subc[o][.] rx, ry, rz subfc[o][.] rx, ry, rz Subtract From Carrying

si[.] rt, ra, value ai[.] rt, ra, -value Subtract Immediate

sub[o][.] rx, ry, rz subf[o][.] rx, ry, rz Subtract From

Note: The sub[o][.] extended mnemonic is for PowerPC, since its base mnemonic subf[o][.] is for
PowerPC only.

Extended Mnemonics of Fixed-Point Compare Instructions

The extended mnemonics for fixed-point compare instructions are shown in the following table. The input
format of operands are different for POWER family and PowerPC. A new L field is added for PowerPC to
support 64-bit implementations. This field must have a value of 0 for 32-bit implementations. Since the
POWER family architecture supports only 32-bit implementations, this field does not exist in POWER
family. The assembler ensures that this bit is set to 0 for POWER family implementations. These extended
mnemonics are in the com assembly mode.

Fixed-Point Compare Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

cmpdi ra, value cmpi 0, 1, ra, value Compare Word Immediate

cmpwi bf, ra, si cmpi bf, 0, ra, si Compare Word Immediate

cmpd ra, rb cmp 0, 1, ra, rb Compare Word

cmpw bf, ra, rb cmp bf, 0, ra, rb Compare Word

Chapter 6. Extended Instruction Mnemonics 91

cmpldi rA, value cmpli 0, 1, ra, value Compare Logical Word Immediate

cmplwi bf, ra, ui cmpli bf, 0, ra, ui Compare Logical Word Immediate

cmpld ra, rb cmpl 0, 1, ra, rb Compare Logical Word

cmplw bf, ra, rb cmpl bf, 0, ra, rb Compare Logical Word

Extended Mnemonics of Fixed-Point Load Instructions

The following table shows the extended mnemonics for fixed-point load instructions for POWER family and
PowerPC. These extended mnemonics are in the com assembly mode.

Fixed-Point Load Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

li rx, value addi rx, 0, value Load Immediate

la rx, disp(ry) addi rx, ry, disp Load Address

lil rt, value cal rt, value(0) Load Immediate Lower

liu rt, value cau rt, 0, value Load Immediate Upper

lis rx, value addis rx, 0, value Load Immediate Shifted

Related Information
Extended Instruction Mnemonics Overview.

Extended Mnemonics of Branch Instructions.

Extended Mnemonics of Condition Register Logical Instructions.

Extended Mnemonics of Fixed-Point Arithmetic Instructions.

Extended Mnemonics of Fixed-Point Compare Instructions.

Extended Mnemonics of Fixed-Point Logical Instructions.

Extended Mnemonics of Fixed-Point Trap Instructions.

Extended Mnemonics of Moving from or to Special-Purpose Registers.

Extended Mnemonics of Fixed-Point Rotate and Shift Instructions.

The addi (Add Immediate) or cal (Compute Address Lower) instruction, addis or cau (Add Immediate
Shifted) instruction.

Extended Mnemonics of Fixed-Point Logical Instructions

The extended mnemonics for fixed-point logical instructions are shown in the following table. These
POWER family and PowerPC extended mnemonics are in the com assembly mode.

Fixed-Point Logical Instruction Extended Mnemonics

Extended Mnemonic Equivalent to Meaning

nop ori 0, 0, 0 OR Immediate

92 Assembler Language Reference

mr[.] rx,ry or[.] rx, ry, ry OR

not[.] rx,ry nor[.] rx, ry, ry NOR

Extended Mnemonics of Fixed-Point Trap Instructions

The extended mnemonics for fixed-point trap instructions incorporate the most useful TO operand values.
A standard set of codes, shown in the following table, has been adopted for the most common
combinations of trap conditions. These extended mnemonics are in the com assembly mode.

Fixed-Point Trap Instruction Codes

Code TO Encoding Meaning

lt 10000 less than

le 10100 less than or equal

ng 10100 not greater than

eq 00100 equal

ge 01100 greater than or equal

nl 01100 not less than

gt 01000 greater than

ne 11000 not equal

llt 00010 logically less than

lle 00110 logically less than or equal

lng 00110 logically not greater than

lge 00101 logically greater than or equal

lnl 00101 logically not less than

lgt 00001 logically greater than

lne 00011 logically not equal

None 11111 Unconditional

The POWER family extended mnemonics for fixed-point trap instructions have the following format:

v txx or txxi

where xx is one of the codes specified in the preceding table.

The 64-bit PowerPC extended mnemonics for double-word, fixed-point trap instructions have the following
format:

v tdxx or tdxxi

The PowerPC extended mnemonics for fixed-point trap instructions have the following formats:

v twxx or twxxi

where xx is one of the codes specified in the preceding table.

The trap instruction is an unconditional trap:

v trap

Chapter 6. Extended Instruction Mnemonics 93

Examples
1. To trap if R10 is less than R20:

tlt 10, 20

This is equivalent to:
t 16, 10, 20

2. To trap if R4 is equal to 0x10:
teqi 4, 0x10

This is equivalent to:
ti 0x4, 4, 0x10

3. To trap unconditionally:
trap

This is equivalent to:
tw 31, 0, 0

4. To trap if RX is not equal to RY:
twnei RX. RY

This is equivalent to:
twi 24, RX, RY

5. To trap if RX is logically greater than 0x7FF:
twlgti RX, 0x7FF

This is equivalent to:
twi 1, RX, 0x7FF

Extended Mnemonic mtcr for Moving to the Condition Register
The mtcr (Move to Condition Register) extended mnemonic copies the contents of the low order 32 bits of
a general purpose register (GPR) to the condition register using the same style as the mfcr instruction.

The extended mnemonic mtcr Rx is equivalent to the instruction mtcrf 0xFF,Rx.

This extended mnemonic is in the com assembly mode.

Extended Mnemonics of Moving from or to Special-Purpose Registers

This article discusses the following extended mnemonics:

v mfspr Extended Mnemonics for POWER family

v mtspr Extended Mnemonics for POWER family

v mfspr Extended Mnemonics for PowerPC

v mtspr Extended Mnemonics for PowerPC

v mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

v mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

mfspr Extended Mnemonics for POWER family

mfspr Extended Mnemonics for POWER family

Extended Mnemonic Equivalent to Privileged SPR Name

94 Assembler Language Reference

mfxer rt mfspr rt,1 no XER

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

mfmq rt mfspr rt,0 no MQ

mfrtcu rt mfspr rt,4 no RTCU

mfrtcl rt mfspr rt,5 no RTCL

mfdec rt mfspr rt,6 no DEC

mftid rt mfspr rt,17 yes TID

mfdsisr rt mfspr rt,18 yes DSISR

mfdar rt mfspr rt,19 yes DAR

mfsdr0 rt mfspr rt,24 yes SDR0

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mtspr Extended Mnemonics for POWER family

mtspr Extended Mnemonics for POWER family

Extended Mnemonic Equivalent to Privileged SPR Name

mfxer rs mtspr 1,rs no XER

mflr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtmq rs mtspr 0,rs no MQ

mtrtcu rs mtspr 20,rs yes RTCU

mtrtcl rs mtspr 21,rs yes RTCL

mtdec rs mtspr 22,rs yes DEC

mttid rs mtspr 17,rs yes TID

mtdsisr rs mtspr 18,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtsdr0 rs mtspr 24,rs yes SDR0

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mfspr Extended Mnemonics for PowerPC

mfspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name

mfxer rt mfspr rt,1 no XER

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

mfdsisr rt mfspr rt,18 yes DSISR

Chapter 6. Extended Instruction Mnemonics 95

mfdar rt mfspr rt,19 yes DAR

mfdec rt mfspr rt,22 yes DEC

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mfsprg rt,0 mfspr rt,272 yes SPRG0

mfsprg rt,1 mfspr rt,273 yes SPRG1

mfsprg rt,2 mfspr rt,274 yes SPRG2

mfsprg rt,3 mfspr rt,275 yes SPRG3

mfear rt mfspr rt,282 yes EAR

mfpvr rt mfspr rt,287 yes PVR

mfibatu rt,0 mfspr rt,528 yes IBAT0U

mfibatl rt,1 mfspr rt,529 yes IBAT0L

mfibatu rt,1 mfspr rt,530 yes IBAT1U

mfibatl rt,1 mfspr rt,531 yes IBAT1L

mfibatu rt,2 mfspr rt,532 yes IBAT2U

mfibatl rt,2 mfspr rt,533 yes IBAT2L

mfibatu rt,3 mfspr rt,534 yes IBAT3U

mfibatl rt,3 mfspr rt,535 yes IBAT3L

mfdbatu rt,0 mfspr rt,536 yes DBAT0U

mfdbatl rt,0 mfspr rt,537 yes DBAT0L

mfdbatu rt,1 mfspr rt,538 yes DBAT1U

mfdbatl rt,1 mfspr rt,539 yes DBAT1L

mfdbatu rt,2 mfspr rt,540 yes DBAT2U

mfdbatl rt,2 mfspr rt,541 yes DBAT2L

mfdbatu rt,3 mfspr rt,542 yes DBAT3U

mfdbatl rt,3 mfspr rt,543 yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction
in PowerPC differs from that in POWER family. See the mfspr instruction for information on this
instruction. Differences between POWER family and PowerPC Instructions with the Same Op Code
provides a summary of the differences for this instruction for POWER family and PowerPC.

mtspr Extended Mnemonics for PowerPC

mtspr Extended Mnemonics for PowerPC

Extended Mnemonic Equivalent to Privileged SPR Name

mtxer rs mtspr 1,rs no XER

mtlr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtdsisr rs mtspr 19,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtdec rs mtspr 22,rs yes DEC

96 Assembler Language Reference

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mtsprg 0,rs mtspr 272,rs yes SPRG0

mtsprg 1,rs mtspr 273,rs yes SPRG1

mtsprg 2,rs mtspr 274,rs yes SPRG2

mtsprg 3,rs mtspr 275,rs yes SPRG3

mtear rs mtspr 282,rs yes EAR

mttbl rs (or mttb rs) mtspr 284,rs yes TBL

mttbu rs mtspr 285,rs yes TBU

mtibatu 0,rs mtspr 528,rs yes IBAT0U

mtibatl 0,rs mtspr 529,rs yes IBAT0L

mtibatu 1,rs mtspr 530,rs yes IBAT1U

mtibatl 1,rs mtspr 531,rs yes IBAT1L

mtibatu 2,rs mtspr 532,rs yes IBAT2U

mtibatl 2,rs mtspr 533,rs yes IBAT2L

mtibatu 3,rs mtspr 534,rs yes IBAT3U

mtibatl 3,rs mtspr 535,rs yes IBAT3L

mtdbatu 0,rs mtspr 536,rs yes DBAT0U

mtdbatl 0,rs mtspr 537,rs yes DBAT0L

mtdbatu 1,rs mtspr 538,rs yes DBAT1U

mtdbatl 1,rs mtspr 539,rs yes DBAT1L

mtdbatu 2,rs mtspr 540,rs yes DBAT2U

mtdbatl 2,rs mtspr 541,rs yes DBAT2L

mtdbatu 3,rs mtspr 542,rs yes DBAT3U

mtdbatl 3,rs mtspr 543,rs yes DBAT3L

Note: The mfdec instruction is a privileged instruction in PowerPC. The encoding for this instruction
in PowerPC differs from that in POWER family. See the mfspr instruction for information on this
instruction. Differences between POWER family and PowerPC Instructions with the Same Op Code
provides a summary of the differences for this instruction for POWER family and PowerPC.

mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name

mfmq rt mfspr rt,0 no MQ

mfxer rt mfspr rt,1 no XER

mfrtcu rt mfspr rt,4 no RTCU

mfrtcl rt mfspr rt,5 no RTCL

mfdec rt mfspr rt,6 no DEC

mflr rt mfspr rt,8 no LR

mfctr rt mfspr rt,9 no CTR

Chapter 6. Extended Instruction Mnemonics 97

mfdsisr rt mfspr rt,18 yes DSISR

mfdar rt mfspr rt,19 yes DAR

mfsdr1 rt mfspr rt,25 yes SDR1

mfsrr0 rt mfspr rt,26 yes SRR0

mfsrr1 rt mfspr rt,27 yes SRR1

mfsprg rt,0 mfspr rt,272 yes SPRG0

mfsprg rt,1 mfspr rt,273 yes SPRG1

mfsprg rt,2 mfspr rt,274 yes SPRG2

mfsprg rt,3 mfspr rt,275 yes SPRG3

mfear rt mfspr rt,282 yes EAR

mfpvr rt mfspr rt,287 yes PVR

mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

Extended Mnemonic Equivalent to Privileged SPR Name

mtmq rs mtspr 0,rs no MQ

mtxer rs mtspr 1,rs no XER

mtlr rs mtspr 8,rs no LR

mtctr rs mtspr 9,rs no CTR

mtdsisr rs mtspr 18,rs yes DSISR

mtdar rs mtspr 19,rs yes DAR

mtrtcu rs mtspr 20,rs yes RTCU

mtrtcl rs mtspr 21,rs yes RTCL

mtdec rs mtspr 22,rs yes DEC

mtsdr1 rs mtspr 25,rs yes SDR1

mtsrr0 rs mtspr 26,rs yes SRR0

mtsrr1 rs mtspr 27,rs yes SRR1

mtsprg 0,rs mtspr 272,rs yes SPRG0

mtsprg 1,rs mtspr 273,rs yes SPRG1

mtsprg 2,rs mtspr 274,rs yes SPRG2

mtsprg 3,rs mtspr 275,rs yes SPRG3

mtear rs mtspr 282,rs yes EAR

Extended Mnemonics of 32-bit Fixed-Point Rotate and Shift
Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left
operations. This article discusses the following:

v Alternative Input Format

v 32-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC

98 Assembler Language Reference

Alternative Input Format
The alternative input format is applied to the following POWER family and PowerPC instructions.

POWER familyPowerPC
rlimi[.] rlwimi[.]
rlinm[.] rlwinm[.]
rlnm[.] rlwnm[.]
rlmi[.] Not applicable

Five operands are normally required for these instructions. These operands are:

RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in
the mask. The assembler supports the following operand format.
RA, RS, SH, BM

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the
instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or
more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

Examples of Valid 32-bit Masks
The following table shows examples of valid 32-bit masks.

0 15 31
| | |

MB = 0 ME = 31 11111111111111111111111111111111
MB = 0 ME = 0 10000000000000000000000000000000
MB = 0 ME = 22 11111111111111111111110000000000
MB = 12 ME = 25 00000000000111111111111110000000

MB = 22 ME = 31 00000000000000000000011111111111
MB = 29 ME = 6 11111110000000000000000000000111

Examples of 32-bit Masks That Are Not Valid
The following table shows examples of 32-bit masks that are not valid.
0 15 31
| | |
00000000000000000000000000000000
01010101010101010101010101010101
00000000000011110000011000000000
11111100000111111111111111000000

32-bit Rotate and Shift Extended Mnemonics for POWER family and
PowerPC
The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC
intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the
following operations:

Extract Selects a field of n bits starting at bit position b in the source
register. This field is right- or left-justified in the target register. All
other bits of the target register are cleared to 0.

Chapter 6. Extended Instruction Mnemonics 99

Insert Selects a left- or right-justified field of n bits in the source register.
This field is inserted starting at bit position b of the target register.
Other bits of the target register are unchanged. No extended
mnemonic is provided for insertion of a left-justified field when
operating on doublewords, since such an insertion requires more
than one instruction.

Rotate Rotates the contents of a register right or left n bits without
masking.

Shift Shifts the contents of a register right or left n bits. Vacated bits are
cleared to 0 (logical shift).

Clear Clears the leftmost or rightmost n bits of a register to 0.
Clear left and shift left Clears the leftmost b bits of a register, then shifts the register by n

bits. This operation can be used to scale a known nonnegative
array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the
number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the
extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the
result of the expression from causing an overflow in the SH, MB, or ME operand.

To maintain compatibility with previous versions of AIX, n is not restricted to a value of 0. If n is 0, the
assembler treats 32-n as a value of 0.

32-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation Extended Mnemonic Equivalent to Restrictions

Extract and left justify
immediate

extlwi RA, RS, n, b rlwinm RA, RS, b, 0, n-1 32 > n > 0

Extract and right justify
immediate

extrwi RA, RS, n, b rlwinm RA, RS, b+n, 32-n,
31

32 > n > 0 & b+n =< 32

Insert from left immediate inslwi RA, RS, n, b rlwinm RA, RS, 32-b, b,
(b+n)-1

b+n <=32 & 32>n > 0 & 32
> b >= 0

Insert from right immediate insrwi RA, RS, n, b rlwinm RA, RS, 32-(b+n),
b, (b+n)-1

b+n <= 32 & 32>n > 0

Rotate left immediate rotlwi RA, RS, n rlwinm RA, RS, n, 0, 31 32 > n >= 0

Rotate right immediate rotrwi RA, RS, n rlwinm RA, RS, 32-n, 0, 31 32 > n >= 0

Rotate left rotlw RA, RS, b rlwinm RA, RS, RB, 0, 31 None

Shift left immediate slwi RA, RS, n rlwinm RA, RS, n, 0, 31-n 32 > n >= 0

Shift right immediate srwi RA, RS, n rlwinm RA, RS, 32-n, n, 31 32 > n >= 0

Clear left immediate clrlwi RA, RS, n rlwinm RA, RS, 0, n, 31 32 > n >= 0

Clear right immediate clrrwi RA, RS, n rlwinm RA, RS, 0, 0, 31-n 32 > n >= 0

Clear left and shift left
immediate

clrslwi RA, RS, b, n rlwinm RA, RS, b-n, 31-n b-n >= 0 & 32 > n >= 0 &
32 > b>= 0

Notes:

1. In POWER family, the mnemonic slwi[.] is sli[.]. The mnemonic srwi[.] is sri[.].

2. All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be
set in the underlying instruction.

100 Assembler Language Reference

Examples
1. To extract the sign bit (bit 31) of register RY and place the result right-justified into register RX:

extrwi RX, RY, 1, 0

This is equivalent to:
rlwinm RX, RY, 1, 31, 31

2. To insert the bit extracted in Example 1 into the sign bit (bit 31) of register RX:
insrwi RZ, RX, 1, 0

This is equivalent to:
rlwimi RZ, RX, 31, 0, 0

3. To shift the contents of register RX left 8 bits and clear the high-order 32 bits:
slwi RX, RX, 8

This is equivalent to:
rlwinm RX, RX, 8, 0, 23

4. To clear the high-order 16 bits of the low-order 32 bits of register RY and place the result in register
RX, and clear the high-order 32 bits of register RX:
clrlwi RX, RY, 16

This is equivalent to:
rlwinm RX, RY, 0, 16, 31

Related Information
The addic or ai (Add Immediate Carrying) instruction, addic. or ai. (Add Immediate Carrying and Record)
instruction, bc (Branch Conditional) instruction, bclr or bcr (Branch Conditional Link Register) instruction,
bcctr or bcc (Branch Conditional to Count Register) instruction, addi (Add Immediate) or cal (Compute
Address Lower) instruction, addis or cau (Add Immediate Shifted) instruction, cmpi (Compare Immediate)
instruction, cmp (Compare) instruction, cmpli (Compare Logical Immediate) instruction, cmpl (Compare
Logical) instruction, creqv (Condition Register Equivalent) instruction, cror (Condition Register OR)
instruction, crnor (Condition Register NOR) instruction, crxor (Condition Register XOR) instruction, mfspr
(Move From Special-Purpose Register) instruction, mtspr (Move To Special-Purpose Register) instruction,
nor (NOR) instruction, or (OR) instruction, rlwinm or rlinm (Rotate Left Word Immediate Then AND with
Mask) instruction, tw or t (Trap Word) instruction, twi or ti (Trap Word Immediate) instruction.

Extended Mnemonics of 64-bit Fixed-Point Rotate and Shift
Instructions

A set of extended mnemonics are provided for extract, insert, rotate, shift, clear, and clear left and shift left
operations. This article discusses the following:

v Alternative Input Format

v 64-bit Rotate and Shift Extended Mnemonics for POWER family and PowerPC

Alternative Input Format
The alternative input format is applied to the following POWER family and PowerPC instructions.

POWER familyPowerPC
rlimi[.] rlwimi[.]
rlinm[.] rlwinm[.]
rlnm[.] rlwnm[.]
rlmi[.] Not applicable

Chapter 6. Extended Instruction Mnemonics 101

Five operands are normally required for these instructions. These operands are:

RA, RS, SH, MB, ME

MB indicates the first bit with a value of 1 in the mask, and ME indicates the last bit with a value of 1 in
the mask. The assembler supports the following operand format.
RA, RS, SH, BM

BM is the mask itself. The assembler generates the MB and ME operands from the BM operand for the
instructions. The assembler checks the BM operand first. If an invalid BM is entered, error 78 is reported.

A valid mask is defined as a single series (one or more) of bits with a value of 1 surrounded by zero or
more bits with a value of z0. A mask of all bits with a value of 0 may not be specified.

64-bit Rotate and Shift Extended Mnemonics for POWER family and
PowerPC
The extended mnemonics for the rotate and shift instructions are in the POWER family and PowerPC
intersection area (com assembly mode). A set of rotate and shift extended mnemonics provide for the
following operations:

Extract Selects a field of n bits starting at bit position b in the source
register. This field is right- or left-justified in the target register. All
other bits of the target register are cleared to 0.

Insert Selects a left- or right-justified field of n bits in the source register.
This field is inserted starting at bit position b of the target register.
Other bits of the target register are unchanged. No extended
mnemonic is provided for insertion of a left-justified field when
operating on doublewords, since such an insertion requires more
than one instruction.

Rotate Rotates the contents of a register right or left n bits without
masking.

Shift Shifts the contents of a register right or left n bits. Vacated bits are
cleared to 0 (logical shift).

Clear Clears the leftmost or rightmost n bits of a register to 0.
Clear left and shift left Clears the leftmost b bits of a register, then shifts the register by n

bits. This operation can be used to scale a known nonnegative
array index by the width of an element.

The rotate and shift extended mnemonics are shown in the following table. The N operand specifies the
number of bits to be extracted, inserted, rotated, or shifted. Because expressions are introduced when the
extended mnemonics are mapped to the base mnemonics, certain restrictions are imposed to prevent the
result of the expression from causing an overflow in the SH, MB, or ME operand.

To maintain compatibility with previous versions of AIX, n is not restricted to a value of 0. If n is 0, the
assembler treats 32-n as a value of 0.

63-bit Rotate and Shift Extended Mnemonics for PowerPC

Operation Extended Mnemonic Equivalent to Restrictions

Extract double word and
right justify immediate

extrdi RA, RS, n, b rldicl RA, RS, b + n, 64 - n n > 0

Rotate double word left
immediate

rotldi RA, RS, n rldicl RA, RS, n, 0 None

102 Assembler Language Reference

Rotate double word right
immediate

rotrdi RA, RS, n rldicl RA, RS, 64 - n, 0 None

Rotate double word right
immediate

srdi RA, RS, n rldicl RA, RS, 64 - n, n n < 64

Clear left double word
immediate

clrldi RA, RS, n rldicl RA, RS, 0, n n < 64

Extract double word and left
justify immediate

extldi RA, RS, n, b rldicr RA, RS, b, n - 1 None

Shift left double word
immediate

sldi RA, RS, n rldicr RA, RS, n, 63 - n None

Clear right double word
immediate

clrrdi RA, RS, n rldicr RA, RS, 0, 63 - n None

Clear left double word and
shift left immediate

clrlsldi RA, RS, b, n rldic RA, RS, n, b - n None

Insert double word from
right immediate

insrdi RA, RS, n, b rldimi RA, RS, 64 - (b + n),
b

None

Rotate double word left rotld RA, RS, RB rldcl RA, RS, RB, 0 None

Note: All of these extended mnemonics can be coded with a final . (period) to cause the Rc bit to be
set in the underlying instruction.

Examples

Related Information
The addic or ai (Add Immediate Carrying) instruction, addic. or ai. (Add Immediate Carrying and Record)
instruction, bc (Branch Conditional) instruction, bclr or bcr (Branch Conditional Link Register) instruction,
bcctr or bcc (Branch Conditional to Count Register) instruction, addi (Add Immediate) or cal (Compute
Address Lower) instruction, addis or cau (Add Immediate Shifted) instruction, cmpi (Compare Immediate)
instruction, cmp (Compare) instruction, cmpli (Compare Logical Immediate) instruction, cmpl (Compare
Logical) instruction, creqv (Condition Register Equivalent) instruction, cror (Condition Register OR)
instruction, crnor (Condition Register NOR) instruction, crxor (Condition Register XOR) instruction, mfspr
(Move From Special-Purpose Register) instruction, mtspr (Move To Special-Purpose Register) instruction,
nor (NOR) instruction, or (OR) instruction, rlwinm or rlinm (Rotate Left Word Immediate Then AND with
Mask) instruction, tw or t (Trap Word) instruction, twi or ti (Trap Word Immediate) instruction.

Chapter 6. Extended Instruction Mnemonics 103

104 Assembler Language Reference

Chapter 7. Migrating Source Programs

The assembler issues errors and warnings if a source program contains instructions that are not in the
current assembly mode. Source compatibility of POWER family programs is maintained on PowerPC
platforms. All POWER family user instructions are emulated in PowerPC by the operating system. Because
the emulation of instructions is much slower than the execution of hardware-supported instructions, for
performance reasons it may be desirable to modify the source program to use hardware-supported
instructions.

The ″invalid instruction form″ problem occurs when restrictions are required in PowerPC but not required
in POWER family. The assembler checks for invalid instruction form errors, but it cannot check the lswx
instruction for these errors. The lswx instruction requires that the registers specified by the second and
third operands (RA and RB) are not in the range of registers to be loaded. Since this is determined by the
content of the Fixed-Point Exception Register (XER) at run time, the assembler cannot perform an invalid
instruction form check for the lswx instruction. At run time, some of these errors may cause a silence
failure, while others may cause an interruption. It may be desirable to eliminate these errors. See
Detection of New Error Conditions for more information on invalid instruction forms.

If the mfspr and mtspr instructions are used, check for proper coding of the special-purpose register
(SPR) operand. The assembler requires that the low-order five bits and the high-order five bits of the SPR
operand be reversed before they are used as the input operand. POWER family and PowerPC have
different sets of SPR operands for nonprivileged instructions. Check for the proper encoding of these
operands. Five POWER family SPRs (TID, SDR0, MQ, RTCU, and RTCL) are dropped from PowerPC, but
the MQ, RTCU, and RTCL instructions are emulated in PowerPC. While these instructions can still be
used, there is some performance degradation due to the emulation. (The operating system has new
routines read_real_time and time_base_to_time that can sometimes be used instead of code accessing
the real time clock or time base SPRs.)

More information on migrating source programs can be found in the following:

v Functional Differences for POWER family and PowerPC Instructions

v Differences between POWER family and PowerPC Instructions with the Same Op Code

v Extended Mnemonics Changes

v POWER family Instructions Deleted from PowerPC

v New PowerPC Instructions

v Instructions Available Only for the PowerPC 601 RISC Microprocessor

v Migration of Branch Conditional Statements with No Separator after Mnemonic

Functional Differences for POWER family and PowerPC Instructions

The following table lists the POWER family and PowerPC instructions that share the same op code on
POWER family and PowerPC platforms, but differ in their functional definition. Use caution when using
these instructions in com assembly mode.

POWER family and PowerPC Instructions with Functional Differences

POWER family PowerPC Description

dcs sync The sync instruction causes more pervasive synchronization in
PowerPC than the dcs instruction does in POWER family.

ics isync The isync instruction causes more pervasive synchronization in
PowerPC than the ics instruction does in POWER family.

© Copyright IBM Corp. 1997, 2001 105

../../libs/basetrf2/read_real_time.htm#HDRE7095F0418JOYC

svca sc In POWER family, information from MSR is saved into CTR. In
PowerPC, this information is saved into SRR1. PowerPC only
supports one vector. POWER family allows instruction fetching to
continue at any of 128 locations. POWER family saves the
low-order 16 bits of the instruction in CTR. PowerPC does not save
the low-order 16 bits of the instruction.

mtsri mtsrin POWER family uses the RA field to compute the segment register
number and, in some cases, the effective address (EA) is stored.
PowerPC has no RA field, and the EA is not stored.

lsx lswx POWER family does not alter the target register RT if the string
length is 0. PowerPC leaves the contents of the target register RT
undefined if the string length is 0.

mfsr mfsr This is a nonprivileged instruction in POWER family. It is a
privileged instruction in PowerPC.

mfmsr mfmsr This is a nonprivileged instruction in POWER family. It is a
privileged instruction in PowerPC.

mfdec mfdec The mfdec instruction is nonprivileged in POWER family, but
becomes a privileged instruction in PowerPC. As a result, the DEC
encoding number for the mfdec instruction is different for POWER
family and PowerPC.

mffs mffs POWER family sets the high-order 32 bits of the result to 0xFFFF
FFFF. In PowerPC, the high-order 32 bits of the result are
undefined.

See Incompatibilities with the POWER family Architecture in PowerPC Architecture for detailed information
on functional differences for these instructions.

Differences between POWER family and PowerPC Instructions with the
Same Op Code

This section discusses the following:

v Instructions with the Same Op Code, Mnemonic, and Function

v Instructions with the Same Op Code and Function

v mfdec Instructions

Instructions with the Same Op Code, Mnemonic, and Function
The following instructions are available in POWER family and PowerPC. These instructions share the
same op code and mnemonic, and have the same function in POWER family and PowerPC, but use
different input operand formats.

v cmp

v cmpi

v cmpli

v cmpl

The input operand format for POWER family is:

BF, RA, SI | RB | UI

The input operand format for PowerPC is:

BF, L, RA, SI | RB | UI

106 Assembler Language Reference

The assembler handles these as the same instructions in POWER family and PowerPC, but with different
input operand formats. The L operand is one bit. For POWER family, the assembler presets this bit to 0.
For 32-bit PowerPC platforms, this bit must be set to 0, or an invalid instruction form results.

Instructions with the Same Op Code and Function
The instructions listed in the following table are available in POWER family and PowerPC. These
instructions share the same op code and function, but have different mnemonics and input operand
formats. The assembler still places them in the POWER family/PowerPC intersection area, because the
same binary code is generated. If the -s option is used, no cross-reference is given, because it is
necessary to change the source code when migrating from POWER family to PowerPC, or vice versa.

Instructions with Same Op Code and Function

POWER family PowerPC

cal addi

mtsri mtsrin

svca sc

cau addis

Notes:

1. lil is an extended mnemonic of cal, and li is an extended mnemonic of addi. Since the op code,
function, and input operand format are the same, the assembler provides a cross-reference for lil
and li.

2. liu is an extended mnemonic of cau, and lis is an extended mnemonic of addis. Since the input
operand format is different, the assembler does not provide a cross-reference for liu and lis.

3. The immediate value for the cau instruction is a 16-bit unsigned integer, while the immediate
value for the addis instruction is a 16-bit signed integer. The assembler performs a (0, 65535)
value range check for the UI field and a (-32768, 32767) value range check for the SI field.

To maintain source compatibility of the cau and addis instructions, the assembler expands the
value range check to (-65536, 65535) for the addis instruction. The sign bit is ignored and the
assembler ensures only that the immediate value fits in 16 bits. This expansion does not affect
the behavior of a 32-bit implementation.

For a 64-bit implementation, if bit 32 is set, it is propagated through the upper 32 bits of the
64-bit general-purpose register (GPR). Therefore, if an immediate value within the range (32768,
65535) or (-65536, -32767) is used for the addis instruction in a 32-bit mode, this immediate
value may not be directly ported to a 64-bit mode.

mfdec Instructions
Moving from the DEC (decrement) special purpose register is privileged in PowerPC, but nonprivileged in
POWER family. One bit in the instruction field that specifies the register is 1 for privileged operations, but 0
for nonprivileged operations. As a result, the encoding number for the DEC SPR for the mfdec instruction
has different values in PowerPC and POWER family. The DEC encoding number is 22 for PowerPC and 6
for POWER family. If the mfdec instruction is used, the assembler determines the DEC encoding based
on the current assembly mode. The following list shows the assembler processing of the mfdec instruction
for each assembly mode value:

v If the assembly mode is pwr, pwr2, or 601, the DEC encoding is 6.

v If the assembly mode is ppc, 603, or 604, the DEC encoding is 22.

v If the default assembly mode, which treats POWER family/PowerPC incompatibility errors as
instructional warnings, is used, the DEC encoding is 6. Instructional warning 158 reports that the DEC
SPR encoding 6 is used to generate the object code. The warning can be suppressed with the -W flag.

Chapter 7. Migrating Source Programs 107

v If the assembly mode is any, the DEC encoding is 6. If the -w flag is used, a warning message (158)
reports that the DEC SPR encoding 6 is used to generate the object code.

v If the assembly mode is com, an error message reports that the mfdec instruction is not supported. No
object code is generated. In this situation, the mfspr instruction must be used to encode the DEC
number.

Extended Mnemonics Changes

The following lists show the added extended mnemonics for POWER family and PowerPC. The assembler
places all POWER family and PowerPC extended mnemonics in the POWER family/PowerPC intersection
area if their basic mnemonics are in this area. Extended mnemonics are separated for POWER family and
PowerPC only for migration purposes. See Extended Instruction Mnemonics Overview for more
information.

Extended Mnemonics in com Mode
The following PowerPC extended mnemonics for branch conditional instructions have been added:

v bdzt

v bdzta

v bdztl

v bdztla

v bdzf

v bdzfa

v bdzfl

v bdzfla

v bdnzt

v bdnzta

v bdnztl

v bdnztla

v bdnzf

v bdnzfa

v bdnzfl

v bdnzfla

v bdztlr

v bdztlrl

v bdzflr

v bdzflrl

v bdnztlr

v bdnztlrl

v bdnzflr

v bdnzflrl

v bun

v buna

v bunl

v bunla

v bunlr

v bunlrl

v bunctr

108 Assembler Language Reference

v bunctrl

v bnu

v bnua

v bnul

v bnula

v bnulr

v bnulrl

v bnuctr

v bnuctrl

The following PowerPC extended mnemonics for condition register logical instructions have been added:

v crset

v crclr

v crmove

v crnot

The following PowerPC extended mnemonics for fixed-point load instructions have been added:

v li

v lis

v la

The following PowerPC extended mnemonics for fixed-point arithmetic instructions have been added:

v subi

v subis

v subc

The following PowerPC extended mnemonics for fixed-point compare instructions have been added:

v cmpwi

v cmpw

v cmplwi

v cmplw

The following PowerPC extended mnemonics for fixed-point trap instructions have been added:

v trap

v twlng

v twlngi

v twlnl

v twlnli

v twng

v twngi

v twnl

v twnli

The following PowerPC extended mnemonics for fixed-point logical instructions have been added:

v nop

v mr[.]

v not[.]

Chapter 7. Migrating Source Programs 109

The following PowerPC extended mnemonics for fixed-point rotate and shift instructions have been added:

v extlwi[.]

v extrwi[.]

v inslwi[.]

v insrwi[.]

v rotlw[.]

v rotlwi[.]

v rotrwi[.]

v clrlwi[.]

v clrrwi[.]

v clrlslwi[.]

Extended Mnemonics in ppc Mode
The following PowerPC extended mnemonic for fixed-point arithmetic instructions has been added for ppc
mode:

v sub

POWER family Instructions Deleted from PowerPC
The following table lists the POWER family instructions that have been deleted from PowerPC, yet are still
supported by the PowerPC 601 RISC Microprocessor. AIX Version 4 provides services to emulate most of
these instructions if an attempt to execute one of them is made on a processor that does not include the
instruction, such as PowerPC 603 RISC Microprocessor or PowerPC 604 RISC Microprocessor, but no
emulation services are provided for the mtrtcl, mtrtcu, or svcla instructions. Using the code to emulate an
instruction is much slower than executing an instruction.

POWER family Instructions Deleted from PowerPC, Supported byPowerPC 601 RISC Microprocessor

abs[o][.] clcs div[o][.] divs[o][.]

doz[o][.] dozi lscbx[.] maskg[.]

maskir[.] mfmq mfrtcl mfrtcu

mtmq mtrtcl mtrtcu mul[o][.]

nabs[o][.] rlmi[.] rrib[.] sle[.]

sleq[.] sliq[.] slliq[.] sllq[.]

slq[.] sraiq[.] sraq[.] sre[.]

srea[.] sreq[.] sriq[.] srliq[.]

srlq[.] srq[.] svcla

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics
for the mfspr and mtspr instructions.

The following table lists the POWER family instructions that have been deleted from PowerPC and that are
not supported by the PowerPC 601 RISC Microprocessor. AIX Version 4 does not provide services to
emulate most of these instructions. However, emulation services are provided for the clf, dclst, and dclz
instructions. Also, the cli instruction is emulated, but only when it is executed in privileged mode.

POWER family Instructions Deleted from PowerPC, Not Supported by PowerPC 601 RISC Microprocessor

clf cli dclst dclz

mfsdr0 mfsri mftid mtsdr0

110 Assembler Language Reference

mttid rac[.] rfsvc svc

svcl tlbi

New PowerPC Instructions

The following table lists new instructions that have been added to PowerPC, but are not in POWER family.
These instructions are supported by the PowerPC 601 RISC Microprocessor.

New PowerPC Instructions, Supported by PowerPC 601 RISC Microprocessor

dcbf dcbi dcbst dcbt

dcbtst dcbz divw[o][.] divwu[o][.]

eieio extsb[.] fadds[.] fdivs[.]

fmadds[.] fmsubs[.] fmuls[.] fnmadds[.]

fnmsubs[.] fsubs[.] icbi lwarx

mfear mfpvr mfsprg mfsrin

mtear mtsprg mulhw[.] mulhwu[.]

stwcx. subf[o][.]

Note: Extended mnemonics are not included in the previous table, except for extended mnemonics
for the mfspr and mtspr instructions.

The following table lists new instructions that have been added to PowerPC, but are not in POWER family.
These instructions are not supported by the PowerPC 601 RISC Microprocessor.

New PowerPC Instructions, Not Supported by PowerPC 601 RISC Microprocessor

mfdbatl mfdbatu mtdbatl mtdbatu

mttb mttbu mftb mftbu

mfibatl mfibatu mtibatl mtibatu

Instructions Available Only for the PowerPC 601 RISC Microprocessor
The following table lists PowerPC optional instructions that are implemented in the PowerPC 601 RISC
Microprocessor:

PowerPC 601 RISC Microprocessor-Unique Instructions

eciwx ecowx mfbatl mfbatu

mtbatl mtbatu tlbie

Note: Extended mnemonics, with the exception of mfspr and mtspr extended mnemonics, are not
provided.

Migration of Branch Conditional Statements with No Separator after
Mnemonic
The AIX Version 4 assembler may parse some statements different from the previous version of the
assembler. This different parsing is only a possibility for statements that meet all the following conditions:

Chapter 7. Migrating Source Programs 111

v The statement does not have a separator character (space or tab) between the mnemonic and the
operands.

v The first character of the first operand is a plus sign (+) or a minus sign (-).

v The mnemonic represents a Branch Conditional instruction.

If an assembler program has statements that meet all the conditions above, and the minus sign, or a plus
sign in the same location, is intended to be part of the operands, not part of the mnemonic, the source
program must be modified. This is especially important for minus signs, because moving a minus sign can
significantly change the meaning of a statement.

The possibility of different parsing occurs in AIX Version 4 because the assembler was modified to support
branch prediction extended mnemonics which use the plus sign and minus sign as part of the mnemonic.
In previous versions of the assembler, letters and period (.) were the only possible characters in
mnemonics. For information on using the new function, see Extended Mnemonics for Branch Prediction .

Examples
1. The following statement is parsed by the AIX Version 4 assembler so that the minus sign is part of the

mnemonic (but previous versions of the assembler parsed the minus sign as part of the operands) and
must be modified if the minus sign is intended to be part of the operands:

bnea- 16 # Separator after the - , but none before
Now: bnea- is a Branch Prediction Mnemonic
and 16 is operand.
Previously: bnea was mnemonic
and -16 was operand.

2. The following are several sample statements which the AIX Version 4 assembler parses the same as
previous assemblers (the minus sign will be interpreted as part of the operands):

bnea -16 # Separator in source program - Good practice
bnea-16 # No separators before or after minus sign
bnea - 16 # Separators before and after the minus sign

Related Information
Features of the AIX Version 4 Assembler .

112 Assembler Language Reference

Chapter 8. Instruction Set

This chapter contains reference articles for the operating system assembler instruction set. The following
appendixes also provide information on the operating system assembler instruction set:

v Appendix B. Instruction Set Sorted by Mnemonic

v Appendix C. Instruction Set Sorted by Primary and Extended Op Code

v Appendix D. Instructions Common to POWER family, POWER2, and PowerPC

v Appendix E. POWER family and POWER2 Instructions

v Appendix F. PowerPC Instructions

v Appendix G. PowerPC 601 RISC Microprocessor Instructions

abs (Absolute) Instruction

Purpose
Takes the absolute value of the contents of a general-purpose register and places the result in another
general-purpose register.

Note: The abs instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 360

31 Rc

POWER family
abs RT, RA
abs. RT, RA
abso RT, RA
abso. RT, RA

Description
The abs instruction places the absolute value of the contents of general-purpose register (GPR) RA into
the target GPR RT.

If GPR RA contains the most negative number (’8000 0000’), the result of the instruction is the most
negative number, and the instruction will set the Overflow bit in the Fixed-Point Exception Register to 1 if
the OE bit is set to 1.

The abs instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

© Copyright IBM Corp. 1997, 2001 113

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

abs 0 None 0 None

abs. 0 None 1 LT,GT,EQ,SO

abso 1 SO,OV 0 None

abso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the abs instruction always affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies the target general-purpose register where result of operation is stored.
RA Specifies the source general-purpose register for operation.

Examples
1. The following code takes the absolute value of the contents of GPR 4 and stores the result in GPR 6:

Assume GPR 4 contains 0x7000 3000.
abs 6,4
GPR 6 now contains 0x7000 3000.

2. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xFFFF FFFF.
abs. 6,4
GPR 6 now contains 0x0000 0001.

3. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect the result
of the operation:
Assume GPR 4 contains 0xB004 3000.
abso 6,4
GPR 6 now contains 0x4FFB D000.

4. The following code takes the absolute value of the contents of GPR 4, stores the result in GPR 6, and
sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
abso. 6,4
GPR 6 now contains 0x8000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

add (Add) or cax (Compute Address) Instruction

Purpose
Adds the contents of two general-purpose registers.

114 Assembler Language Reference

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 266

31 Rc

PowerPC
add RT, RA, RB
add. RT, RA, RB
addo RT, RA, RB
addo. RT, RA, RB

POWER family
cax RT, RA, RB
cax. RT, RA, RB
caxo RT, RA, RB
caxo. RT, RA, RB

Description
The add and cax instructions place the sum of the contents of general-purpose register (GPR) RA and
GPR RB into the target GPR RT.

The add and cax instructions have four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

add 0 None 0 None

add. 0 None 1 LT,GT,EQ,SO

addo 1 SO,OV 0 None

addo. 1 SO,OV 1 LT,GT,EQ,SO

cax 0 None 0 None

cax. 0 None 1 LT,GT,EQ,SO

caxo 1 SO,OV 0 None

caxo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the add instruction and the four syntax forms of the cax instruction never affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Chapter 8. Instruction Set 115

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3 and

stores the result in GPR 4:
Assume GPR 6 contains 0x0004 0000.
Assume GPR 3 contains 0x0000 4000.
add 4,6,3
GPR 4 now contains 0x0004 4000.

2. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 6 contains 0x8000 7000.
Assume GPR 3 contains 0x7000 8000.
add. 4,6,3
GPR 4 now contains 0xF000 F000.

3. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point
Exception Register to reflect the result of the operation:
Assume GPR 6 contains 0xEFFF FFFF.
Assume GPR 3 contains 0x8000 0000.
addo 4,6,3
GPR 4 now contains 0x6FFF FFFF.

4. The following code adds the address or contents in GPR 6 to the address or contents in GPR 3, stores
the result in GPR 4, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point
Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 6 contains 0xEFFF FFFF.
Assume GPR 3 contains 0xEFFF FFFF.
addo. 4,6,3
GPR 4 now contains 0xDFFF FFFE.

Related Information
Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addc or a (Add Carrying) Instruction

Purpose
Adds the contents of two general-purpose registers and places the result in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

116 Assembler Language Reference

Bits Value

21 OE

22-30 10

31 Rc

PowerPC
addc RT, RA, RB
addc. RT, RA, RB
addco RT, RA, RB
addco. RT, RA, RB

a RT, RA, RB
a. RT, RA, RB
ao RT, RA, RB
ao. RT, RA, RB

Description
The addc and a instructions place the sum of the contents of general-purpose register (GPR) RA and
GPR RB into the target GPR RT.

The addc instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The a instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

addc 0 CA 0 None

addc. 0 CA 1 LT,GT,EQ,SO

addco 1 SO,OV,CA 0 None

addco. 1 SO,OV,CA 1 LT,GT,EQ,SO

a 0 CA 0 None

a. 0 CA 1 LT,GT,EQ,SO

ao 1 SO,OV,CA 0 None

ao. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addc instruction and the four syntax forms of the a instruction always affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 117

RB Specifies source general-purpose register for operation.

Examples
1. The following code adds the contents of GPR 4 to the contents of GPR 10 and stores the result in

GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 10 contains 0x8000 7000.
addc 6,4,10
GPR 6 now contains 0x1000 A000.

2. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x7000 3000.
Assume GPR 10 contains 0xFFFF FFFF.
addc. 6,4,10
GPR 6 now contains 0x7000 2FFF.

3. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to
reflect the result of the operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 10 contains 0x7B41 92C0.
addco 6,4,10
GPR 6 now contains 0x0B41 C2C0.

4. The following code adds the contents of GPR 4 to the contents of GPR 10, stores the result in GPR 6,
and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0x8000 7000.
addco. 6,4,10
GPR 6 now contains 0x0000 7000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

adde or ae (Add Extended) Instruction

Purpose
Adds the contents of two general-purpose registers to the value of the Carry bit in the Fixed-Point
Exception Register and places the result in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 138

118 Assembler Language Reference

Bits Value

31 Rc

PowerPC
adde RT, RA, RB
adde. RT, RA, RB
addeo RT, RA, RB
addeo. RT, RA, RB

POWER family
ae RT, RA, RB
ae. RT, RA, RB
aeo RT, RA, RB
aeo. RT, RA, RB

Description
The adde and ae instructions place the sum of the contents of general-purpose register (GPR) RA, GPR
RB, and the Carry bit into the target GPR RT.

The adde instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The ae instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

adde 0 CA 0 None

adde. 0 CA 1 LT,GT,EQ,SO

addeo 1 SO,OV,CA 0 None

addeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

ae 0 CA 0 None

ae. 0 CA 1 LT,GT,EQ,SO

aeo 1 SO,OV,CA 0 None

aeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the adde instruction and the four syntax forms of the ae instruction always affect
the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow Exception
(OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the Fixed-Point
Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than
(LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition
Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 119

Examples
1. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point

Exception Register Carry bit and stores the result in GPR 6:
Assume GPR 4 contains 0x1000 0400.
Assume GPR 10 contains 0x1000 0400.
Assume the Carry bit is one.
adde 6,4,10
GPR 6 now contains 0x2000 0801.

2. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets Condition Register Field 0 to reflect
the result of the operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 10 contains 0x7B41 92C0.
Assume the Carry bit is zero.
adde. 6,4,10
GPR 6 now contains 0x0B41 C2C0.

3. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,
and Carry bits in the Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x1000 0400.
Assume GPR 10 contains 0xEFFF FFFF.
Assume the Carry bit is one.
addeo 6,4,10
GPR 6 now contains 0x0000 0400.

4. The following code adds the contents of GPR 4, the contents of GPR 10, and the Fixed-Point
Exception Register Carry bit; stores the result in GPR 6; and sets the Summary Overflow, Overflow,
and Carry bits in the Fixed-Point Exception Register and Condition Register Field 0 to reflect the result
of the operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 10 contains 0x8000 7000.
Assume the Carry bit is zero.
addeo. 6,4,10
GPR 6 now contains 0x1000 A000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addi (Add Immediate) or cal (Compute Address Lower) Instruction

Purpose
Calculates an address from an offset and a base address and places the result in a general-purpose
register.

Syntax

Bits Value

0-5 14

6-10 RT

11-15 RA

16-31 SI/D

120 Assembler Language Reference

PowerPC
addi RT, RA, SI

POWER family
cal RT, D(RA)

See Extended Mnemonics of Fixed-Point Arithmetic Instructions and Extended Mnemonics of Fixed-Point
Load Instructions for more information.

Description
The addi and cal instructions place the sum of the contents of general-purpose register (GPR) RA and the
16-bit two’s complement integer SI or D, sign-extended to 32 bits, into the target GPR RT. If GPR RA is
GPR 0, then SI or D is stored into the target GPR RT.

The addi and cal instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
D Specifies 16-bit two’s complement integer sign extended to 32 bits.
SI Specifies 16-bit signed integer for operation.

Examples
The following code calculates an address or contents with an offset of 0xFFFF 8FF0 from the contents of
GPR 5 and stores the result in GPR 4:
Assume GPR 5 contains 0x0000 0900.
addi 4,0xFFFF8FF0(5)
GPR 4 now contains 0xFFFF 98F0.

Related Information
Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addic or ai (Add Immediate Carrying) Instruction

Purpose
Adds the contents of a general-purpose register and a 16-bit signed integer, places the result in a
general-purpose register, and effects the Carry bit of the Fixed-Point Exception Register.

Syntax

Bits Value

0-5 12

6-10 RT

11-15 RA

16-31 SI

Chapter 8. Instruction Set 121

PowerPC
addic RT, RA, SI

POWER family
ai RT, RA, SI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description
The addic and ai instructions place the sum of the contents of general-purpose register (GPR) RA and a
16-bit signed integer, SI, into target GPR RT.

The 16-bit integer provided as immediate data is sign-extended to 32 bits prior to carrying out the addition
operation.

The addic and ai instructions have one syntax form and can set the Carry bit of the Fixed-Point Exception
Register; these instructions never affect Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
SI Specifies 16-bit signed integer for operation.

Examples
The following code adds 0xFFFF FFFF to the contents of GPR 4, stores the result in GPR 6, and sets the
Carry bit to reflect the result of the operation:
Assume GPR 4 contains 0x0000 2346.
addic 6,4,0xFFFFFFFF
GPR 6 now contains 0x0000 2345.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addic. or ai. (Add Immediate Carrying and Record) Instruction

Purpose
Performs an addition with carry of the contents of a general-purpose register and an immediate value.

Syntax

Bits Value

0-5 13

6-10 RT

11-15 RA

16-31 SI

122 Assembler Language Reference

PowerPC
addic. RT, RA, SI

POWER family
ai. RT, RA, SI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description
The addic. and ai. instructions place the sum of the contents of general-purpose register (GPR) RA and a
16-bit signed integer, SI, into the target GPR RT.

The 16-bit integer SI provided as immediate data is sign-extended to 32 bits prior to carrying out the
addition operation.

The addic. and ai. instructions have one syntax form and can set the Carry Bit of the Fixed-Point
Exception Register. These instructions also affect Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
SI Specifies 16-bit signed integer for operation.

Examples
The following code adds a 16-bit signed integer to the contents of GPR 4, stores the result in GPR 6, and
sets the Fixed-Point Exception Register Carry bit and Condition Register Field 0 to reflect the result of the
operation:
Assume GPR 4 contains 0xEFFF FFFF.
addic. 6,4,0x1000
GPR 6 now contains 0xF000 0FFF.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

addis or cau (Add Immediate Shifted) Instruction

Purpose
Calculates an address from a concatenated offset and a base address and loads the result in a
general-purpose register.

Syntax

Bits Value

0-5 15

6-10 RT

11-15 RA

Chapter 8. Instruction Set 123

Bits Value

16-31 SI/UI

PowerPC
addis RT, RA, SI

POWER family
cau RT, RA, UI

See Extended Mnemonics of Fixed-Point Arithmetic Instructions and Extended Mnemonics of Fixed-Point
Load Instructions for more information.

Description
The addis and cau instructions place the sum of the contents of general-purpose register (GPR) RA and
the concatenation of a 16-bit unsigned integer, SI or UI, and x’0000’ into the target GPR RT. If GPR RA is
GPR 0, then the sum of the concatenation of 0, SI or UI, and x’0000’ is stored into the target GPR RT.

The addis and cau instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Note: The immediate value for the cau instruction is a 16-bit unsigned integer, whereas the
immediate value for the addis instruction is a 16-bit signed integer. This difference is a result of
extending the architecture to 64 bits.

The assembler does a 0 to 65535 value-range check for the UI field, and a -32768 to 32767 value-range
check for the SI field.

To keep the source compatibility of the addis and cau instructions, the assembler expands the
value-range check for the addis instruction to -65536 to 65535. The sign bit is ignored and the assembler
only ensures that the immediate value fits into 16 bits. This expansion does not affect the behavior of a
32-bit implementation or 32-bit mode in a 64-bit implementation.

The addis instruction has different semantics in 32-bit mode than it does in 64-bit mode. If bit 32 is set, it
propagates through the upper 32 bits of the 64-bit general-purpose register. Use caution when using the
addis instruction to construct an unsigned integer. The addis instruction with an unsigned integer in 32-bit
may not be directly ported to 64-bit mode. The code sequence needed to construct an unsigned integer in
64-bit mode is significantly different from that needed in 32-bit mode.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies first source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.
SI Specifies
16-bit signed integer for operation.

Examples
The following code adds an offset of 0x0011 0000 to the address or contents contained in GPR 6 and
loads the result into GPR 7:
Assume GPR 6 contains 0x0000 4000.
addis 7,6,0x0011
GPR 7 now contains 0x0011 4000.

124 Assembler Language Reference

Related Information
Fixed-Point Processor .

Fixed-Point Address Computation Instructions .

addme or ame (Add to Minus One Extended) Instruction

Purpose
Adds the contents of a general-purpose register, the Carry bit in the Fixed-Point Exception Register, and -1
and places the result in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 234

31 Rc

PowerPC
addme RT, RA
addme. RT, RA
addmeo RT, RA
addmeo. RT, RA

POWER family
ame RT, RA
ame. RT, RA
ameo RT, RA
ameo. RT, RA

Description
The addme and ame instructions place the sum of the contents of general-purpose register (GPR) RA, the
Carry bit of the Fixed-Point Exception Register, and -1 (0xFFFF FFFF) into the target GPR RT.

The addme instruction has four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

The ame instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

addme 0 CA 0 None

addme. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 125

addmeo 1 SO,OV,CA 0 None

addmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

ame 0 CA 0 None

ame. 0 CA 1 LT,GT,EQ,SO

ameo 1 SO,OV,CA 0 None

ameo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addme instruction and the four syntax forms of the ame instruction always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,

and -1 and stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is zero.
addme 6,4
GPR 6 now contains 0x9000 2FFF.

2. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets Condition Register Field 0 to reflect the result of the
operation:
Assume GPR 4 contains 0xB000 42FF.
Assume the Carry bit is zero.
addme. 6,4
GPR 6 now contains 0xB000 42FE.

3. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the
Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume the Carry bit is zero.
addmeo 6,4
GPR 6 now contains 0x7FFF FFFF.

4. The following code adds the contents of GPR 4, the Carry bit in the Fixed-Point Exception Register,
and -1; stores the result in GPR 6; and sets the Summary Overflow, Overflow, and Carry bits in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume the Carry bit is one.
addmeo. 6,4
GPR 6 now contains 0x8000 000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

126 Assembler Language Reference

addze or aze (Add to Zero Extended) Instruction

Purpose
Adds the contents of a general-purpose register, zero, and the value of the Carry bit in the FIxed-Point
Exception Register and places the result in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 202

31 Rc

PowerPC
addze RT, RA
addze. RT, RA
addzeo RT, RA
addzeo. RT, RA

POWER family
aze RT, RA
aze. RT, RA
azeo RT, RA
azeo. RT, RA

Description
The addze and aze instructions add the contents of general-purpose register (GPR) RA, the Carry bit, and
0x0000 0000 and place the result into the target GPR RT.

The addze instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The aze instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

addze 0 CA 0 None

addze. 0 CA 1 LT,GT,EQ,SO

addzeo 1 SO,OV,CA 0 None

addzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

aze 0 CA 0 None

aze. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 127

azeo 1 SO,OV,CA 0 None

azeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the addze instruction and the four syntax forms of the aze instruction always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code adds the contents of GPR 4, 0, and the Carry bit and stores the result in GPR 6:

Assume GPR 4 contains 0x7B41 92C0.
Assume the Carry bit is zero.
addze 6,4
GPR 6 now contains 0x7B41 92C0.

2. The following code adds the contents of GPR 4, 0, and the Carry bit, stores the result in GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xEFFF FFFF.
Assume the Carry bit is one.
addze. 6,4
GPR 6 now contains 0xF000 0000.

3. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and
sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to reflect
the result of the operation:
Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is one.
addzeo 6,4
GPR 6 now contains 0x9000 3001.

4. The following code adds the contents of GPR 4, 0, and the Carry bit; stores the result in GPR 6; and
sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xEFFF FFFF.
Assume the Carry bit is zero.
adzeo. 6,4
GPR 6 now contains 0xEFFF FFFF.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

and (AND) Instruction

Purpose
Logically ANDs the contents of two general-purpose registers and places the result in a general-purpose
register.

128 Assembler Language Reference

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 28

31 Rc

and RA, RS, RB
and. RA, RS, RB

Description
The and instruction logically ANDs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and places the result into the target GPR RA.

The and instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

and None None 0 None

and. None None 1 LT,GT,EQ,SO

The two syntax forms of the and instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7 and stores the

result in GPR 6:
Assume GPR 4 contains 0xFFF2 5730.
Assume GPR 7 contains 0x7B41 92C0.
and 6,4,7
GPR 6 now contains 0x7B40 1200.

2. The following code logically ANDs the contents of GPR 4 with the contents of GPR 7, stores the result
in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xFFF2 5730.
Assume GPR 7 contains 0xFFFF EFFF.
and. 6,4,7
GPR 6 now contains 0xFFF2 4730.

Chapter 8. Instruction Set 129

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

andc (AND with Complement) Instruction

Purpose
Logically ANDs the contents of a general-purpose register with the complement of the contents of a
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 60

31 Rc

andc RA, RS, RB
andc. RA, RS, RB

Description
The andc instruction logically ANDs the contents of general-purpose register (GPR) RS with the
complement of the contents of GPR RB and places the result into GPR RA.

The andc instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

andc None None 0 None

andc. None None 1 LT,GT,EQ,SO

The two syntax forms of the andc instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

130 Assembler Language Reference

Examples
1. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR

5 and stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0xFFFF FFFF.
The complement of 0xFFFF FFFF becomes 0x0000 0000.
andc 6,4,5
GPR 6 now contains 0x0000 0000.

2. The following code logically ANDs the contents of GPR 4 with the complement of the contents of GPR
5, stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x7676 7676.
The complement of 0x7676 7676 is 0x8989 8989.
andc. 6,4,5
GPR 6 now contains 0x8000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

andi. or andil. (AND Immediate) Instruction

Purpose
Logically ANDs the contents of a general-purpose register with an immediate value.

Syntax

Bits Value

0-5 28

6-10 RS

11-15 RA

16-31 UI

PowerPC
andi. RA, RS, UI

POWER family
andil. RA, RS, UI

Description
The andi. and andil. instructions logically AND the contents of general-purpose register (GPR) RS with the
concatenation of x’0000’ and a 16-bit unsigned integer, UI, and place the result in GPR RA.

The andi. and andil. instructions have one syntax form and never affect the Fixed-Point Exception
Register. The andi. and andil. instructions copies the Summary Overflow (SO) bit from the Fixed-Point
Exception Register into Condition Register Field 0 and sets one of the Less Than (LT), Greater Than (GT),
or Equal To (EQ) bits of Condition Register Field 0.

Chapter 8. Instruction Set 131

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.

Examples
The following code logically ANDs the contents of GPR 4 with 0x0000 5730, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x7B41 92C0.
andi. 6,4,0x5730
GPR 6 now contains 0x0000 1200.
CRF 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

andis. or andiu. (AND Immediate Shifted) Instruction

Purpose
Logically ANDs the most significant 16 bits of the contents of a general-purpose register with a 16-bit
unsigned integer and stores the result in a general-purpose register.

Syntax

Bits Value

0-5 29

6-10 RS

11-15 RA

16-31 UI

PowerPC
andis. RA, RS, UI

POWER family
andiu. RA, RS, UI

Description
The andis. and andiu. instructions logically AND the contents of general-purpose register (GPR) RS with
the concatenation of a 16-bit unsigned integer, UI, and x’0000’ and then place the result into the target
GPR RA.

The andis. and andiu. instructions have one syntax form and never affect the Fixed-Point Exception
Register. The andis. and andiu. instructions set the Less Than (LT) zero, Greater Than (GT) zero, Equal
To (EQ) zero, or Summary Overflow (SO) bit in Condition Register Field 0.

132 Assembler Language Reference

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.

Examples
The following code logically ANDs the contents of GPR 4 with 0x5730 0000, stores the result in GPR 6,
and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x7B41 92C0.
andis. 6,4,0x5730
GPR 6 now contains 0x5300 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

b (Branch) Instruction

Purpose
Branches to a specified target address.

Syntax

Bits Value

0-5 18

6-29 LL

30 AA

31 LK

b target_address
ba target_address
bl target_address
bla target_address

Description
The b instruction branches to an instruction specified by the branch target address. The branch target
address is computed one of two ways.

Consider the following when using the b instruction:

v If the Absolute Address bit (AA) is 0, the branch target address is computed by concatenating the 24-bit
LI field. This field is calculated by subtracting the address of the instruction from the target address and
dividing the result by 4 and b’00’. The result is then sign-extended to 32 bits and added to the address
of this branch instruction.

v If the AA bit is 1, then the branch target address is the LI field concatenated with b’00’ sign-extended to
32 bits. The LI field is the low-order 26 bits of the target address divided by four.

Chapter 8. Instruction Set 133

The b instruction has four syntax forms. Each syntax form has a different effect on the Link bit and Link
Register.

Syntax Form Absolute Address
Bit (AA)

Fixed-Point
Exception Register

Link Bit (LK) Condition Register
Field 0

b 0 None 0 None

ba 1 None 0 None

bl 0 None 1 None

bla 1 None 1 None

The four syntax forms of the b instruction never affect the Fixed-Point Exception Register or Condition
Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of
calculating the branch target address is used. If the Link bit (LK) is set to 1, then the effective address of
the instruction is placed in the Link Register.

Parameters

target_address Specifies the target address.

Examples
1. The following code transfers the execution of the program to there:

here: b there
cror 31,31,31

The execution of the program continues at there.
there:

2. The following code transfers the execution of the program to here and sets the Link Register:
bl here

return: cror 31,31,31
The Link Register now contains the address of return.
The execution of the program continues at here.
here:

Related Information
Branch Processor .

Branch Instructions .

bc (Branch Conditional) Instruction

Purpose
Conditionally branches to a specified target address.

Syntax

Bits Value

0-5 16

6-10 BO

11-15 BI

16-29 BD

134 Assembler Language Reference

Bits Value

30 AA

31 LK

bc BO, BI, target_address
bca BO, BI, target_address
bcl BO, BI, target_address
bcla BO, BI, target_address

See Extended Mnemonics of Branch Instructions for more information.

Description
The bc instruction branches to an instruction specified by the branch target address. The branch target
address is computed one of two ways:

v If the Absolute Address bit (AA) is 0, then the branch target address is computed by concatenating the
14-bit Branch Displacement (BD) and b’00’, sign-extending this to 32 bits, and adding the result to the
address of this branch instruction.

v If the AA is 1, then the branch target address is BD concatenated with b’00’ sign-extended to 32 bits.

The bc instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Absolute Address
Bit (AA)

Fixed-Point
Exception Register

Link Bit (LK) Condition Register
Field 0

bc 0 None 0 None

bca 1 None 0 None

bcl 0 None 1 None

bcla 1 None 1 None

The four syntax forms of the bc instruction never affect the Fixed-Point Exception Register or Condition
Register Field 0. The syntax forms set the AA bit and the Link bit (LK) and determine which method of
calculating the branch target address is used. If the Link Bit (LK) is set to 1, then the effective address of
the instruction is placed in the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC Architecture. The following list gives brief descriptions
of the possible values for this field:

BO Description
0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.
001zy Branch if the condition is False.
0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.
011zy Branch if the condition is True.
1z00y Decrement the CTR; then branch if the decremented CTR is not 0.
1z01y Decrement the CTR; then branch if the decremented CTR is 0.
1z1zz Branch always.

Chapter 8. Instruction Set 135

In the PowerPC Architecture, the z bit denotes a bit that must be 0. If the bit is not 0, the instruction form
is invalid.

In the PowerPC Architecture, the y bit provides a hint about whether a conditional branch is likely to be
taken. The value of this bit can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

Parameters

target_address Specifies the target address. For absolute branches such as bca and bcla, the target
address can be immediate data containable in 16 bits.

BI Specifies bit in Condition Register for condition comparison.
BO Specifies Branch Option field used in instruction.

Examples
The following code branches to a target address dependent on the value in the Count Register:
addi 8,0,3
Loads GPR 8 with 0x3.
mtctr 8
The Count Register (CTR) equals 0x3.
addic. 9,8,0x1
Adds one to GPR 8 and places the result in GPR 9.
The Condition Register records a comparison against zero

with the result.
bc 0xC,0,there
Branch is taken if condition is true. 0 indicates that
the 0 bit in the Condition Register is checked to
determine if it is set (the LT bit is on). If it is set,
the branch is taken.
bcl 0x8,2,there
CTR is decremented by one, becomming 2.

The branch is taken if CTR is not equal to 0 and CTR bit 2
is set (the EQ bit is on).
The Link Register contains address of next instruction.

bcctr or bcc (Branch Conditional to Count Register) Instruction

Purpose
Conditionally branches to the address contained within the Count Register.

Syntax

Bits Value

0-5 19

6-10 BO

11-15 BI

16-20 ///

21-30 528

31 LK

136 Assembler Language Reference

PowerPC
bcctr BO, BI
bcctrl BO, BI

POWER family
bcc BO, BI
bccl BO, BI

See Extended Mnemonics of Branch Instructions for more information.

Description
The bcctr and bcc instructions conditionally branch to an instruction specified by the branch target
address contained within the Count Register. The branch target address is the concatenation of Count
Register bits 0-29 and b’00’.

The bcctr and bcc instructions have two syntax forms. Each syntax form has a different effect on the Link
bit and Link Register.

Syntax Form Absolute Address
Bit (AA)

Fixed-Point
Exception Register

Link Bit (LK) Condition Register
Field 0

bcctr None None 0 None

bcctrl None None 1 None

bcc None None 0 None

bccl None None 1 None

The two syntax forms of the bcctr and bcc instructions never affect the Fixed-Point Exception Register or
Condition Register Field 0. If the Link bit is 1, then the effective address of the instruction following the
branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC Architecture. The following list gives brief descriptions
of the possible values for this field:

BO Description
0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.
001zy Branch if the condition is False.
0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.
011zy Branch if the condition is True.
1z00y Decrement the CTR; then branch if the decremented CTR is not 0.
1z01y Decrement the CTR; then branch if the decremented CTR is 0.
1z1zz Branch always.

In the PowerPC Architecture, the z bit denotes a bit that must be 0. If the bit is not 0, the instruction form
is invalid.

In the PowerPC Architecture, the y bit provides a hint about whether a conditional branch is likely to be
taken. The value of this bit can be either 0 or 1. The default value is 0.

Chapter 8. Instruction Set 137

In the POWER family Architecture, the z and y bits can be either 0 or 1.

Parameters

BO Specifies Branch Option field.
BI Specifies bit in Condition Register for condition comparison.
BIF Specifies the Condition Register field that specifies the Condition Register bit (LT, GT, EQ, or SO) to be used

for condition comparison.

Examples
The following code branches from a specific address, dependent on a bit in the Condition Register, to the
address contained in the Count Register:
bcctr 0x4,0
cror 31,31,31
Branch occurs if LT bit in the Condition Register is 0.
The branch will be to the address contained in
the Count Register.
bcctrl 0xC,1
return: cror 31,31,31
Branch occurs if GT bit in the Condition Register is 1.
The branch will be to the address contained in
the Count Register.
The Link register now contains the address of return.

Related Information
Assembler Overview.

Branch Processor .

Branch Instructions .

bclr or bcr (Branch Conditional Link Register) Instruction

Purpose
Conditionally branches to an address contained in the Link Register.

Syntax

Bits Value

0-5 19

6-10 BO

11-15 BI

16-20 ///

21-30 16

31 LK

PowerPC
bclr BO, BI
bclrl BO, BI

138 Assembler Language Reference

POWER family
bcr BO, BI
bcrl BO, BI

See Extended Mnemonics of Branch Instructions for more information.

Description
The bclr and bcr instructions branch to an instruction specified by the branch target address. The branch
target address is the concatenation of bits 0-29 of the Link Register and b’00’.

The bclr and bcr instructions have two syntax forms. Each syntax form has a different effect on the Link
bit and Link Register.

Syntax Form Absolute Address
Bit (AA)

Fixed-Point
Exception Register

Link Bit (LK) Condition Register
Field 0

bclr None None 0 None

bclrl None None 1 None

bcr None None 0 None

bcrl None None 1 None

The two syntax forms of the bclr and bcr instruction never affect the Fixed-Point Exception Register or
Condition Register Field 0. If the Link bit (LK) is 1, then the effective address of the instruction that follows
the branch instruction is placed into the Link Register.

The Branch Option field (BO) is used to combine different types of branches into a single instruction.
Extended mnemonics are provided to set the Branch Option field automatically.

The encoding for the BO field is defined in PowerPC Architecture. The following list gives brief descriptions
of the possible values for this field:

BO Description
0000y Decrement the CTR; then branch if the decremented CTR is not 0 and the condition is False.
0001y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is False.
001zy Branch if the condition is False.
0100y Decrement the CTR; then branch if bits the decremented CTR is not 0 and the condition is True.
0101y Decrement the CTR; then branch if the decremented CTR is 0 and the condition is True.
011zy Branch if the condition is True.
1z00y Decrement the CTR; then branch if the decremented CTR is not 0.
1z01y Decrement the CTR; then branch if the decremented CTR is 0.
1z1zz Branch always.

In the PowerPC Architecture, the z bit denotes a bit that must be 0. If the bit is not 0, the instruction form
is invalid.

In the PowerPC Architecture, the y bit provides a hint about whether a conditional branch is likely to be
taken. The value of this bit can be either 0 or 1. The default value is 0.

In the POWER family Architecture, the z and y bits can be either 0 or 1.

Chapter 8. Instruction Set 139

Parameters

BO Specifies Branch Option field.
BI Specifies bit in Condition Register for condition comparison.

Examples
The following code branches to the calculated branch target address dependent on bit 0 of the Condition
Register:
bclr 0x0,0
The Count Register is decremented.
A branch occurs if the LT bit is set to zero in the
Condition Register and if the Count Register
does not equal zero.
If the conditions are met, the instruction branches to
the concatenation of bits 0-29 of the Link Register and b'00'.

Related Information
Assembler Overview.

Branch Processor .

Branch Instructions .

clcs (Cache Line Compute Size) Instruction

Purpose
Places a specified cache line size in a general-purpose register.

Note: The clcs instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21-30 531

31 Rc

POWER family
clcs RT, RA

Description
The clcs instruction places the cache line size specified by RA into the target general-purpose register
(GPR) RT. The value of RA determines the cache line size returned in GPR RT.

Value of RA Cache Line Size Returned in RT

00xxx Undefined

140 Assembler Language Reference

010xx Undefined

01100 Instruction Cache Line Size

01101 Data Cache Line Size

01110 Minimum Cache Line Size

01111 Maximum Cache Line Size

1xxxx Undefined

Note: The value in GPR RT must lie between 64 and 4096, inclusive, or results will be undefined.

The clcs instruction has only one syntax form and does not affect the Fixed-Point Exception Register. If
the Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies cache line size requested.

Examples
The following code loads the maximum cache line size into GPR 4:
Assume that 0xf is the cache
line size requested
.

clcs 4,0xf
GPR 4 now contains the maximum Cache Line size.

Related Information
The clf (Cache Line Flush) instruction, cli (Cache Line Invalidate) instruction, dcbf (Data Cache Block
Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

Processing and Storage: Overview.

clf (Cache Line Flush) Instruction

Purpose
Writes a line of modified data from the data cache to main memory, or invalidates cached instructions or
unmodified data.

Note: The clf instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

Chapter 8. Instruction Set 141

Bits Value

16-20 RB

21-30 118

31 Rc

POWER family
clf RA, RB

Description
The clf instruction calculates an effective address (EA) by adding the contents of general-purpose register
(GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB and 0. If
the RA field is not 0 and if the instruction does not cause a data storage interrupt, the result of the
operation is placed back into GPR RA.

Consider the following when using the clf instruction:

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is set to 0, the effective address is
treated as a real address.

v If the MSR DR bit is set to 1, the effective address is treated as a virtual address. The MSR Instruction
Relocate bit (IR) is ignored in this case.

v If a line containing the byte addressed by the EA is in the data cache and has been modified, writing
the line to main memory is begun. If a line containing the byte addressed by EA is in one of the caches,
the line is not valid.

v When MSR (DR) = 1, if the virtual address has no translation, a Data Storage interrupt occurs, setting
the first bit of the Data Storage Interrupt Segment register to 1.

v A machine check interrupt occurs when the virtual address translates to an invalid real address and the
line exists in the data cache.

v Address translation treats the instruction as a load to the byte addressed, ignoring protection and data
locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is set.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is placed in GPR
RA.

The clf instruction has one syntax form and does not effect the Fixed-Point Exception register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RA Specifies the source general-purpose register for EA calculation and, if RA is not GPR 0, the target
general-purpose register for operation.

RB Specifies the source general-purpose register for EA calculation.

Examples
The processor is not required to keep instruction storage consistent with data storage. The following code
executes storage synchronization instructions prior to executing an modified instruction:
Assume that instruction A is assigned to storage location
ox0033 0020.
Assume that the storage location to which A is assigned
contains 0x0000 0000.
Assume that GPR 3 contains 0x0000 0020.
Assume that GPR 4 contains 0x0033 0020.
Assume that GPR 5 contains 0x5000 0020.
st R5,R4,R3 # Store branch instruction in memory

142 Assembler Language Reference

clf R4,R3 # Flush A from cache to main memory
dcs # Ensure clf is complete
ics # Discard prefetched instructions
b 0x0033 0020 # Go execute the new instructions

After the store, but prior to the execution of the clf, dcs, and ics instructions, the copy of A in the cache
contains the branch instruction. However, it is possible that the copy of A in main memory still contains 0.
The clf instruction copies the new instruction back to main memory and invalidates the cache line
containing location A in both the instruction and data caches. The sequence of the dcs instruction followed
by the ics instruction ensures that the new instruction is in main memory and that the copies of the
location in the data and instruction caches are invalid before fetching the next instruction.

Related Information
The clcs (Cache Line Compute Size) instruction, cli (Cache Line Invalidate) instruction, dcbf (Data Cache
Block Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

Processing and Storage: Overview.

cli (Cache Line Invalidate) Instruction

Purpose
Invalidates a line containing the byte addressed in either the data or instruction cache, causing subsequent
references to retrieve the line again from main memory.

Note: The cli instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 502

31 Rc

POWER family
cli RA, RB

Description
The cli instruction invalidates a line containing the byte addressed in either the data or instruction cache. If
RA is not 0, the cli instruction calculates an effective address (EA) by adding the contents of
general-purpose register (GPR) RA to the contents of GPR RB. If RA is not GPR 0 or the instruction does
not cause a Data Storage interrupt, the result of the calculation is placed back into GPR RA.

Consider the following when using the cli instruction:

Chapter 8. Instruction Set 143

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated
as a real address.

v If the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit
is ignored in this case.

v If a line containing the byte addressed by the EA is in the data or instruction cache, the line is made
unusable so the next reference to the line is taken from main memory.

v When MSR (DR) =1, if the virtual address has no translation, a Data Storage interrupt occurs, setting
the first bit of the Data Storage Interrupt Segment Register to 1.

v Address translation treats the cli instruction as a store to the byte addressed, ignoring protection and
data locking. If this instruction causes a Translation Look-Aside buffer (TLB) miss, the reference bit is
set.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the EA is still placed in RA.

The cli instruction has only one syntax form and does not effect the Fixed-Point Exception Register. If the
Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

RA Specifies the source general-purpose register for EA calculation and possibly the target general-purpose
register (when RA is not GPR 0) for operation.

RB Specifies the source general-purpose register for EA calculation.

Security
The cli instruction is privileged.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, dcbf (Data Cache
Block Flush) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

Processing and Storage: Overview.

cmp (Compare) Instruction

Purpose
Compares the contents of two general-purpose registers algebraically.

Syntax

Bits Value

0-5 31

6-8 BF

9 /

10 L

11-15 RA

16-20 RB

144 Assembler Language Reference

Bits Value

21-30 0

31 /

cmp BF, L, RA, RB

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description
The cmp instruction compares the contents of general-purpose register (GPR) RA with the contents of
GPR RB as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmp instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
The following code compares the contents of GPR 4 and GPR 6 as signed integers and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xFFFF FFE7.
Assume GPR 5 contains 0x0000 0011.
Assume 0 is Condition Register Field 0.
cmp 0,4,6
The LT bit of Condition Register Field 0 is set.

Related Information
The cmpi (Compare Immediate) instruction, cmpl (Compare Logical) instruction, cmpli (Compare Logical
Immediate) instruction.

Fixed-Point Processor .

Chapter 8. Instruction Set 145

cmpi (Compare Immediate) Instruction

Purpose
Compares the contents of a general-purpose register and a given value algebraically.

Syntax

Bits Value

0-5 11

6-8 BF

9 /

10 L

11-15 RA

16-31 SI

cmpi BF, L, RA, SI

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description
The cmpi instruction compares the contents of general-purpose register (GPR) RA and a 16- bit signed
integer, SI, as signed integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpi instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.
RA Specifies first source general-purpose register for operation.
SI Specifies 16-bit signed integer for operation.

Examples
The following code compares the contents of GPR 4 and the signed integer 0x11 and sets Condition
Register Field 0 to reflect the result of the operation:

146 Assembler Language Reference

Assume GPR 4 contains 0xFFFF FFE7.
cmpi 0,4,0x11
The LT bit of Condition Register Field 0 is set.

Related Information
The cmp (Compare) instruction, cmpl (Compare Logical) instruction, cmpli (Compare Logical Immediate)
instruction.

Fixed-Point Processor .

cmpl (Compare Logical) Instruction

Purpose
Compares the contents of two general-purpose registers logically.

Syntax

Bits Value

0-5 31

6-8 BF

9 /

10 L

11-15 RA

16-20 RB

21-30 32

31 /

cmpl BF, L, RA, RB

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description
The cmpl instruction compares the contents of general-purpose register (GPR) RA with the contents of
GPR RB as unsigned integers and sets one of the bits in Condition Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpl instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Chapter 8. Instruction Set 147

Parameters

BF Specifies Condition Register Field 0-7 which indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
The following code compares the contents of GPR 4 and GPR 5 as unsigned integers and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xFFFF 0000.
Assume GPR 5 contains 0x7FFF 0000.
Assume 0 is Condition Register Field 0.
cmpl 0,4,5
The GT bit of Condition Register Field 0 is set.

Related Information
The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpli (Compare Logical
Immediate) instruction.

Fixed-Point Processor .

cmpli (Compare Logical Immediate) Instruction

Purpose
Compares the contents of a general-purpose register and a given value logically.

Syntax

Bits Value

0-5 10

6-8 BF

9 /

10 L

11-15 RA

16-31 UI

cmpli BF, L, RA, UI

See Extended Mnemonics of Fixed-Point Compare Instructions for more information.

Description
The cmpli instruction compares the contents of general-purpose register (GPR) RA with the concatenation
of x′0000’ and a 16-bit unsigned integer, UI, as unsigned integers and sets one of the bits in the Condition
Register Field BF.

BF can be Condition Register Field 0-7; programmers can specify which Condition Register Field will
indicate the result of the operation.

148 Assembler Language Reference

The bits of Condition Register Field BF are interpreted as follows:

Bit Name Description

0 LT (RA) < SI

1 GT (RA) > SI

2 EQ (RA) = SI

3 SO SO,OV

The cmpli instruction has one syntax form and does not affect the Fixed-Point Exception Register.
Condition Register Field 0 is unaffected unless it is specified as BF by the programmer.

Parameters

BF Specifies Condition Register Field 0-7 that indicates result of compare.
L Must be set to 0 for the 32-bit subset architecture.
RA Specifies source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.

Examples
The following code compares the contents of GPR 4 and the unsigned integer 0xff and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 00ff.
cmpli 0,4,0xff
The EQ bit of Condition Register Field 0 is set.

Related Information
The cmp (Compare) instruction, cmpi (Compare Immediate) instruction, cmpl (Compare Logical)
instruction.

Fixed-Point Processor .

cntlzd (Count Leading Zeros Double Word) Instruction

Purpose
Count the number of consecutive zero bits in the contents of a general purpose register, beginning with
the high-order bit.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 00000

21-30 58

31 Rc

Chapter 8. Instruction Set 149

PowerPC64
cntlzd rA, rS (Rc=0)
cntlzd. rA, rS(Rc=1)

Description
A count of the number of consecutive zero bits, starting at bit 0 (the high-order bit) of register GPR RS is
placed into GPR RA. This number ranges from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Other registers altered:

Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: If Rc = 1, then LT is cleard in the CR0 field.

Parameters

RA Specifies the target general purpose register for the results of the instruction.
RS Specifies the source general purpose register containing the double-word to examine.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

cntlzw or cntlz (Count Leading Zeros Word) Instruction

Purpose
Places the number of leading zeros from a source general-purpose register in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21-30 26

31 Rc

PowerPC
cntlzw RA, RS
cntlzw. RA, RS

150 Assembler Language Reference

POWER family
cntlz RA, RS
cntlz. RA, RS

Description
The cntlzw and cntlz instructions count the number (between 0 and 32 inclusive) of consecutive zero bits
starting at bit 0 of general-purpose register (GPR) RS and store the result in the target GPR RA.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

cntlzw None None 0 None

cntlzw. None None 1 LT,GT,EQ,SO

cntlz None None 0 None

cntlz. None None 1 LT,GT,EQ,SO

The two syntax forms of the cntlzw instruction and the two syntax forms of the cntlz instruction never
affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.

Examples
The following code counts the number of leading zeros in the value contained in GPR 3 and places the
result back in GPR 3:
Assume GPR 3 contains 0x0061 9920.
cntlzw 3,3
GPR 3 now holds 0x0000 0009.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

crand (Condition Register AND) Instruction

Purpose
Places the result of ANDing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

Chapter 8. Instruction Set 151

Bits Value

16-20 BB

21-30 257

31 /

crand BT, BA, BB

Description
The crand instruction logically ANDs the Condition Register bit specified by BA and the Condition Register
bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code logically ANDs Condition Register bits 0 and 5 and stores the result in Condition
Register bit 31:
Assume Condition Register bit 0 is 1.
Assume Condition Register bit 5 is 0.
crand 31,0,5
Condition Register bit 31 is now 0.

Related Information
Branch Processor .

Condition Register Instructions .

crandc (Condition Register AND with Complement) Instruction

Purpose
Places the result of ANDing one Condition Register bit and the complement of a Condition Register bit in a
Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 129

31 /

152 Assembler Language Reference

crandc BT, BA, BB

Description
The crandc instruction logically ANDs the Condition Register bit specified in BA and the complement of
the Condition Register bit specified by BB and places the result in the target Condition Register bit
specified by BT.

The crandc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code logically ANDs Condition Register bit 0 and the complement of Condition Register bit 5
and puts the result in bit 31:
Assume Condition Register bit 0 is 1.
Assume Condition Register bit 5 is 0.
crandc 31,0,5
Condition Register bit 31 is now 1.

Related Information
Branch Processor .

Condition Register Instructions .

creqv (Condition Register Equivalent) Instruction

Purpose
Places the complemented result of XORing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 289

31 /

creqv BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Chapter 8. Instruction Set 153

Description
The creqv instruction logically XORs the Condition Register bit specified in BA and the Condition Register
bit specified by BB and places the complemented result in the target Condition Register bit specified by
BT.

The creqv instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the complemented result of XORing Condition Register bits 8 and 4 into
Condition Register bit 4:
Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
creqv 4,8,4
Condition Register bit 4 is now 0.

Related Information
Branch Processor .

Condition Register Instructions .

crnand (Condition Register NAND) Instruction

Purpose
Places the complemented result of ANDing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 225

31 /

crnand BT, BA, BB

Description
The crnand instruction logically ANDs the Condition Register bit specified by BA and the Condition
Register bit specified by BB and places the complemented result in the target Condition Register bit
specified by BT.

The crnand instruction has one syntax form and does not affect the Fixed-Point Exception Register.

154 Assembler Language Reference

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code logically ANDs Condition Register bits 8 and 4 and places the complemented result
into Condition Register bit 4:
Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crnand 4,8,4
Condition Register bit 4 is now 1.

Related Information
Branch Processor .

Condition Register Instructions .

crnor (Condition Register NOR) Instruction

Purpose
Places the complemented result of ORing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 33

31 /

crnor BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description
The crnor instruction logically ORs the Condition Register bit specified in BA and the Condition Register
bit specified by BB and places the complemented result in the target Condition Register bit specified by
BT.

The crnor instruction has one syntax form and does not affect the Fixed Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.

Chapter 8. Instruction Set 155

BB Specifies source Condition Register bit for operation.

Examples
The following code logically ORs Condition Register bits 8 and 4 and stores the complemented result into
Condition Register bit 4:
Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crnor 4,8,4
Condition Register bit 4 is now 0.

Related Information
Branch Processor .

Condition Register Instructions .

cror (Condition Register OR) Instruction

Purpose
Places the result of ORing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 449

31 /

cror BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description
The cror instruction logically ORs the Condition Register bit specified by BA and the Condition Register bit
specified by BB and places the result in the target Condition Register bit specified by BT.

The cror instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the result of ORing Condition Register bits 8 and 4 into Condition Register bit 4:

156 Assembler Language Reference

Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
cror 4,8,4
Condition Register bit 4 is now 1.

Related Information
Branch Processor .

Condition Register Instructions .

crorc (Condition Register OR with Complement) Instruction

Purpose
Places the result of ORing a Condition Register bit and the complement of a Condition Register bit in a
Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 417

31 /

crorc BT, BA, BB

Description
The crorc instruction logically ORs the Condition Register bit specified by BA and the complement of the
Condition Register bit specified by BB and places the result in the target Condition Register bit specified
by BT.

The crorc instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the result of ORing Condition Register bit 8 and the complement of Condition
Register bit 4 into Condition Register bit 4:
Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 0.
crorc 4,8,4
Condition Register bit 4 is now 1.

Chapter 8. Instruction Set 157

Related Information
Branch Processor .

Condition Register Instructions .

crxor (Condition Register XOR) Instruction

Purpose
Places the result of XORing two Condition Register bits in a Condition Register bit.

Syntax

Bits Value

0-5 19

6-10 BT

11-15 BA

16-20 BB

21-30 193

31 /

crxor BT, BA, BB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description
The crxor instruction logically XORs the Condition Register bit specified by BA and the Condition Register
bit specified by BB and places the result in the target Condition Register bit specified by BT.

The crxor instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

BT Specifies target Condition Register bit where result of operation is stored.
BA Specifies source Condition Register bit for operation.
BB Specifies source Condition Register bit for operation.

Examples
The following code places the result of XORing Condition Register bits 8 and 4 into Condition Register bit
4:
Assume Condition Register bit 8 is 1.
Assume Condition Register bit 4 is 1.
crxor 4,8,4
Condition Register bit 4 is now 0.

Related Information
Branch Processor .

Condition Register Instructions .

158 Assembler Language Reference

dcbf (Data Cache Block Flush) Instruction

Purpose
Copies modified cache blocks to main storage and invalidates the copy in the data cache.

Note: The dcbf instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 86

31 /

PowerPC
dcbf RA, RB

Description
The dcbf instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB
and 0. If the cache block containing the target storage locations is in the data cache, it is copied back to
main storage, provided it is different than the main storage copy.

Consider the following when using the dcbf instruction:

v If a block containing the byte addressed by the EA is in the data cache and has been modified, the
block is copied to main memory. If a block containing the byte addressed by EA is in one of the caches,
the block is made not valid.

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

The dcbf instruction has one syntax form and does not effect the Fixed-Point Exception Register.

Parameters

RA Specifies the source general-purpose register for operation.
RB Specifies the source general-purpose register for operation.

Examples
The software manages the coherency of storage shared by the processor and another system component,
such as an I/O device that does not participate in the storage coherency protocol. The following code
flushes the shared storage from the data cache prior to allowing another system component access to the
storage:
Assume that the variable A is assigned to storage location
0x0000 4540.
Assume that the storage location to which A is assigned
contains 0.
Assume that GPR 3 contains 0x0000 0040.

Chapter 8. Instruction Set 159

Assume that GPR 4 contains 0x0000 4500.
Assume that GPR 5 contains -1.
st R5,R4,R3 # Store 0xFFFF FFFF to A
dcbf R4,R3 # Flush A from cache to main memory
sync # Ensure dcbf is complete. Start I/O

operation

After the store, but prior to the execution of the dcbf and sync instructions, the copy of A in the cache
contains a -1. However, it is possible that the copy of A in main memory still contains 0. After the sync
instruction completes, the location to which A is assigned in main memory contains -1 and the processor
data cache no longer contains a copy of location A.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbi (Data Cache Block Invalidate) instruction, dcbst (Data Cache Block Store)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

dcbi (Data Cache Block Invalidate) Instruction

Purpose
Invalidates a block containing the byte addressed in the data cache, causing subsequent references to
retrieve the block again from main memory.

Note: The dcbi instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 470

31 /

PowerPC
dcbi RA, RB

Description
If the contents of general-purpose register (GPR) RA is not 0, the dcbi instruction computes an effective
address (EA) by adding the contents of GPR RA to the contents of GPR RB. Otherwise, the EA is the
content of GPR RB.

If the cache block containing the addressed byte is in the data cache, the block is made invalid.
Subsequent references to a byte in the block cause a reference to main memory.

The dcbi instruction is treated as a store to the addressed cache block with respect to protection.

160 Assembler Language Reference

The dcbi instruction has only one syntax form and does not effect the Fixed-Point Exception register.

Parameters

RA Specifies the source general-purpose register for EA computation.
RB Specifies the source general-purpose register for EA computation.

Security
The dcbi instruction is privileged.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbst (Data Cache Block Store)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

Processing and Storage

dcbst (Data Cache Block Store) Instruction

Purpose
Allows a program to copy the contents of a modified block to main memory.

Note: The dcbst instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 54

31 /

PowerPC
dcbst RA, RB

Description
The dcbst instruction causes any modified copy of the block to be copied to main memory. If RA is not 0,
the dcbst instruction computes an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB. Otherwise, the EA is the contents of RB. If the cache block
containing the addressed byte is in the data cache and is modified, the block is copied to main memory.

Chapter 8. Instruction Set 161

The dcbst instruction may be used to ensure that the copy of a location in main memory contains the
most recent updates. This may be important when sharing memory with an I/O device that does not
participate in the coherence protocol. In addition, the dcbst instruction can ensure that updates are
immediately copied to a graphics frame buffer.

Treat the dcbst instruction as a load from the addressed byte with respect to address translation and
protection.

The dcbst instruction has one syntax form and does not effect the Fixed-Point Exception register.

Parameters

RA Specifies the source general-purpose register for EA computation.
RB Specifies the source general-purpose register for EA computation.

Examples
1. The following code shares memory with an I/O device that does not participate in the coherence

protocol:
Assume that location A is memory that is shared with the
I/O device.
Assume that GPR 2 contains a control value indicating that
and I/O operation should start.
Assume that GPR 3 contains the new value to be placed in
location A.
Assume that GPR 4 contains the address of location A.
Assume that GPR 5 contains the address of a control register
in the I/O device.
st 3,0,4 # Update location A.
dcbst 0,4 # Copy new content of location A and

other bytes in cache block to main
memory.

sync # Ensure the dcbst instruction has
completed.

st 2,0,5 # Signal I/O device that location A has
been update.

2. The following code copies to a graphics frame buffer, ensuring that new values are displayed without
delay:
Assume that target memory is a graphics frame buffer.
Assume that GPR 2, 3, and 4 contain new values to be displayed.
Assume that GPR 5 contains the address minus 4 of where the
first value is to be stored.
Assume that the 3 target locations are known to be in a single
cache block.
addi 6,5,4 # Compute address of first memory

location.
stwu 2,4(5) # Store value and update address ptr.
stwu 3,4(5) # Store value and update address ptr.
stwu 4,4(5) # Store value and update address ptr.
dcbst 0,6 # Copy new content of cache block to

frame buffer. New values are displayed.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbt (Data Cache Block Touch) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

162 Assembler Language Reference

Processing and Storage: Overview.

dcbt (Data Cache Block Touch) Instruction

Purpose
Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbt instruction is support only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 278

31 /

PowerPC
dcbt RA, RB

Description
The dcbt instruction may improve performance by anticipating a load from the addressed byte. The block
containing the byte addressed by the effective address (EA) is fetched into the data cache before the
block is needed by the program. The program can later perform loads from the block and may not
experience the added delay caused by fetching the block into the cache. Executing the dcbt instruction
does not invoke the system error handler.

If general-purpose register (GPR) RA is not 0, the effective address (EA) is the sum of the content of GPR
RA and the content of GPR RB. Otherwise, the EA is the content of GPR RB.

Consider the following when using the dcbt instruction:

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

v The access is treated as a load from the addressed cache block with respect to protection. If protection
does not permit access to the addressed byte, the dcbt instruction performs no operations.

Note: If a program needs to store to the data cache block, use the dcbtst (Data Cache Block
Touch for Store) instruction.

The dcbt instruction has one syntax form and does not affect Condition Register field 0 or the Fixed-Point
Exception register.

Parameters

RA Specifies source general-purpose register for EA computation.
RB Specifies source general-purpose register for EA computation.

Chapter 8. Instruction Set 163

Examples
The following code sums the content of a one-dimensional vector:
Assume that GPR 4 contains the address of the first element
of the sum.
Assume 49 elements are to be summed.
Assume the data cache block size is 32 bytes.
Assume the elements are word aligned and the address
are multiples of 4.

dcbt 0,4 # Issue hint to fetch first
cache block.

addi 5,4,32 # Compute address of second
cache block.

addi 8,0,6 # Set outer loop count.
addi 7,0,8 # Set inner loop counter.
dcbt 0,5 # Issue hint to fetch second

cache block.
lwz 3,4,0 # Set sum = element number 1.

bigloop:
addi 8,8,-1 # Decrement outer loop count

and set CR field 0.
mtspr CTR,7 # Set counter (CTR) for

inner loop.
addi 5,5,32 # Computer address for next

touch.
lttlloop:

lwzu 6,4,4 # Fetch element.
add 3,3,6 # Add to sum.
bc 16,0,lttlloop # Decrement CTR and branch

if result is not equal to 0.
dcbt 0,5 # Issue hint to fetch next

cache block.
bc 4,3,bigloop # Branch if outer loop CTR is

not equal to 0.
end # Summation complete.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbtst (Data Cache Block Touch for Store)
instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store)
instruction, icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache
Synchronize) instruction.

Processing and Storage

dcbtst (Data Cache Block Touch for Store) Instruction

Purpose
Allows a program to request a cache block fetch before it is actually needed by the program.

Note: The dcbtst instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

164 Assembler Language Reference

Bits Value

11-15 RA

16-20 RB

21-30 246

31 /

PowerPC
dcbtst RA, RB

Description
The dcbtst instruction improves performance by anticipating a store to the addressed byte. The block
containing the byte addressed by the effective address (EA) is fetched into the data cache before the
block is needed by the program. The program can later perform stores to the block and may not
experience the added delay caused by fetching the block into the cache. Executing the dcbtst instruction
does not invoke the system error handler.

The dcbtst instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB. If the RA field is 0, EA is the sum of the contents of RB
and 0.

Consider the following when using the dcbtst instruction:

v If the EA specifies a direct store segment address, the instruction is treated as a no-op.

v The access is treated as a load from the addressed cache block with respect to protection. If protection
does not permit access to the addressed byte, the dcbtst instruction performs no operations.

v If a program does not need to store to the data cache block, use the dcbt (Data Cache Block Touch)
instruction.

The dcbtst instruction has one syntax form and does not affect Condition Register field 0 or the
Fixed-Point Exception register.

Parameters

RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbz
or dclz (Data Cache Block Set to Zero) instruction, dclst (Data Cache Line Store) instruction, icbi
(Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)
instruction.

Processing and Storage

Chapter 8. Instruction Set 165

dcbz or dclz (Data Cache Block Set to Zero) Instruction

Purpose
The PowerPC instruction, dcbz, sets all bytes of a cache block to 0.

The POWER family instruction, dclz,sets all bytes of a cache line to 0.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 1014

31 /

PowerPC
dcbz RA, RB

POWER family
dclz RA, RB

Description
The dcbz and dclz instructions work with data cache blocks and data cache lines respectively. If RA is not
0, the dcbz and dclz instructions compute an effective address (EA) by adding the contents of
general-purpose register (GPR) RA to the contents of GPR RB. If GPR RA is 0, the EA is the contents of
GPR RB.

If the cache block or line containing the addressed byte is in the data cache, all bytes in the block or line
are set to 0. Otherwise, the block or line is established in the data cache without reference to storage and
all bytes of the block or line are set to 0.

For the POWER family instruction dclz, if GPR RA is not 0, the EA replaces the content of GPR RA.

The dcbz and dclz instructions are treated as a store to the addressed cache block or line with respect to
protection.

The dcbz and dclz instructions have one syntax form and do not effect the Fixed-Point Exception
Register. If bit 31 is set to 1, the instruction form is invalid.

Parameters

PowerPC
RA Specifies the source register for EA computation.
RB Specifies the source register for EA computation.

POWER family
RA Specifies the source register for EA computation and the target register for EA update.

166 Assembler Language Reference

POWER family
RB Specifies the source register for EA computation.

Security
The dclz instruction is privileged.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst
(Data Cache Block Touch for Store) instruction, dclst (Data Cache Line Store) instruction, icbi (Instruction
Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize) instruction.

Fixed-Point Processor .

dclst (Data Cache Line Store) Instruction

Purpose
Stores a line of modified data in the data cache into main memory.

Note: The dclst instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 630

31 Rc

POWER family
dclst RA, RB

Description
The dclst instruction adds the contents of general-purpose register (GPR) RA to the contents of GPR RB.
It then stores the sum in RA as the effective address (EA) if RA is not 0 and the instruction does not
cause a Data Storage interrupt.

If RA is 0, the effective address (EA) is the sum of the contents of GPR RB and 0.

Consider the following when using the dclst instruction:

v If the line containing the byte addressed by the EA is in the data cache and has been modified, the
dclst instruction writes the line to main memory.

v If data address translation is enabled (that is, the Machine State Register (MSR) Data Relocate (DR) bit
is 1) and the virtual address has no translation, a Data Storage interrupt occurs with bit 1 of the Data
Storage Interrupt Segment Register set to 1.

Chapter 8. Instruction Set 167

v If data address translation is enabled (MSR DR bit is 1), the virtual address translates to an unusable
real address, the line exists in the data cache, and a Machine Check interrupt occurs.

v If data address translation is disabled (MSR DR bit is 0) the address specifies an unusable real
address, the line exists in the data cache, and a Machine Check interrupt occurs.

v If the EA specifies an I/O address, the instruction is treated as a no-op, but the effective address is
placed into GPR RA.

v Address translation treats the dclst instruction as a load to the byte addressed, ignoring protection and
data locking. If this instruction causes a Translation Look-Aside Buffer (TLB) miss, the reference bit is
set.

The dclst instruction has one syntax form and does not effect the Fixed-Point Exception register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RA Specifies the source and target general-purpose register where result of operation is stored.
RB Specifies the source general-purpose register for EA calculation.

Examples
The following code stores the sum of the contents of GPR 4 and GPR 6 in GPR 6 as the effective
address:
Assume that GPR 4 contains 0x0000 3000.
Assume that GPR 6 is the target register and that it
contains 0x0000 0000.
dclst 6,4
GPR 6 now contains 0x0000 3000.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst
(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction,
icbi (Instruction Cache Block Invalidate) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)
instruction.

Processing and Storage

div (Divide) Instruction

Purpose
Divides the contents of a general-purpose register concatenated with the MQ Register by the contents of a
general-purpose register and stores the result in a general-purpose register.

Note: The div instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

168 Assembler Language Reference

Bits Value

16-20 RB

21 OE

22-30 331

31 Rc

POWER family
div RT, RA, RB
div. RT, RA, RB
divo RT, RA, RB
divo. RT, RA, RB

Description
The div instruction concatenates the contents of general-purpose register (GPR) RA and the contents of
Multiply Quotient (MQ) Register, divides the result by the contents of GPR RB, and stores the result in the
target GPR RT. The remainder has the same sign as the dividend, except that a zero quotient or a zero
remainder is always positive. The results obey the equation:
dividend = (divisor x quotient) + remainder

where a dividend is the original (RA) || (MQ), divisor is the original (RB), quotient is the final (RT), and
remainder is the final (MQ).

For the case of -2**31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other
overflows, the contents of MQ, the target GPR RT, and the Condition Register Field 0 (if the Record Bit
(Rc) is 1) are undefined.

The div instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

div 0 None 0 None

div. 0 None 1 LT,GT,EQ,SO

divo 1 SO,OV 0 None

divo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the div instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 169

Examples
1. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents

of GPR 6 and stores the result in GPR 4:
Assume the MQ Register contains 0x0000 0001.
Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
div 4,4,6
GPR 4 now contains 0x0000 0000.
The MQ Register now contains 0x0000 0001.

2. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, stores the result in GPR 4, and sets Condition Register Field 0 to reflect the result of the
operation:
Assume the MQ Register contains 0x0000 0002.
Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
div. 4,4,6
GPR 4 now contains 0x0000 0001.
MQ Register contains 0x0000 0000.

3. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the
Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0000.
Assume the MQ Register contains 0x0000 0000.
divo 4,4,6
GPR 4 now contains an undefined quantity.
The MQ Register is undefined.

4. The following code divides the contents of GPR 4, concatenated with the MQ Register, by the contents
of GPR 6, places the result in GPR 4, and sets the Summary Overflow and Overflow bits in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x-1.
Assume GPR 6 contains 0x2.
Assume the MQ Register contains 0xFFFFFFFF.
divo. 4,4,6
GPR 4 now contains 0x0000 0000.
The MQ Register contains 0x-1.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

divd (Divide Double Word) Instruction

Purpose
Divide the contents of a general purpose register by the contents of a general purpose register, storing the
result into a general purpose register.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 31

170 Assembler Language Reference

Bits Value

6-10 D

11-15 A

16-20 B

21 OE

22-30 489

31 Rc

PowerPC64
divd RT, RA, RB (OE=0 Rc=0)
divd. RT, RA, RB (OE=0 Rc=1)
divdo RT, RA, RB (OE=1 Rc=0)
divdo. RT, RA, RB (OE=1 Rc=1)

Description
The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is
placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the unique signed
integer that satisfies the equation-dividend = (quotient * divisor) + r, where 0 <= r < |divisor| if the dividend
is non-negative, and -|divisor| < r <=0 if the dividend is negative.

If an attempt is made to perform the divisions 0x8000_0000_0000_0000 / -1 or / 0, the contents of RT are
undefined, as are the contents of the LT, GT, and EQ bits of the condition register 0 field (if the record bit
(Rc) = 1 (the divd. or divdo. instructions)). In this case, if overflow enable (OE) = 1 then the overflow bit
(OV) is set.

The 64-bit signed remainder of dividing (RA) by (RB) can be computed as follows, except in the case that
(RA) = -2**63 and (RB) = -1:

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient * divisor
subf RT,RT,RA # RT = remainder

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for the dividend.
RB Specifies source general-purpose register for the divisor.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

divdu (Divide Double Word Unsigned) Instruction

Purpose
Divide the contents of a general purpose register by the contents of a general purpose register, storing the
result into a general purpose register.

Chapter 8. Instruction Set 171

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 OE

22-30 457

31 Rc

PowerPC
divdu RT, RA, RB (OE=0 Rc=0)
divdu. RT, RA, RB (OE=0 Rc=1)
divduo RT, RA, RB (OE=1 Rc=0)
divduo. RT, RA, RB (OE=1 Rc=1)

Description
The 64-bit dividend is the contents of RA. The 64-bit divisor is the contents of RB. The 64- bit quotient is
placed into RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as unsigned integers, except that if the record bit (Rc)
is set to 1 the first three bits of th condition register 0 (CR0) field are set by signed comparison of the
result to zero. The quotient is the unique unsigned integer that satisfies the equation: dividend = (quotient
* divisor) + r, where 0 <= r < divisor.

If an attempt is made to perform the division (anything) / 0 the contents of RT are undefined, as are the
contents of the LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if the overflow enable bit (OE)
= 1 then the overflow bit (OV) is set.

The 64-bit unsigned remainder of dividing (RA) by (RB) can be computed as follows:

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient * divisor
subf RT,RT,RA # RT = remainder

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER: Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the
64-bit result.

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for the dividend.
RB Specifies source general-purpose register for the divisor.

172 Assembler Language Reference

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

divs (Divide Short) Instruction

Purpose
Divides the contents of a general-purpose register by the contents of a general-purpose register and
stores the result in a general-purpose register.

Note: The divs instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21

22-30 363

31 Rc

POWER family
divs RT, RA, RB
divs. RT, RA, RB
divso RT, RA, RB
divso. RT, RA, RB

Description
The divs instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB and stores the result in the target GPR RT. The remainder has the same sign as the dividend, except
that a zero quotient or a zero remainder is always positive. The results obey the equation:
dividend = (divisor x quotient) + remainder

where a dividend is the original (RA), divisor is the original (RB), quotient is the final (RT), and
remainder is the final (MQ).

For the case of -2**31 P -1, the MQ Register is set to 0 and -2**31 is placed in GPR RT. For all other
overflows, the contents of MQ, the target GPR RT and the Condition Register Field 0 (if the Record Bit
(Rc) is 1) are undefined.

The divs instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

divs 0 None 0 None

divs. 0 None 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 173

divso 1 SO,OV 0 None

divso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the divs instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:
Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0002.
divs 4,4,6
GPR 4 now contains 0x0.
The MQ Register now contains 0x1.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0002.
Assume GPR 6 contains 0x0000 0002.
divs. 4,4,6
GPR 4 now contains 0x0000 0001.
The MQ Register now contains 0x0000 0000.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:
Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0000.
divso 4,4,6
GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x-1.
Assume GPR 6 contains 0x0000 00002.
Assume the MQ Register contains 0x0000 0000.
divso. 4,4,6
GPR 4 now contains 0x0000 0000.
The MQ register contains 0x-1.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

174 Assembler Language Reference

divw (Divide Word) Instruction

Purpose
Divides the contents of a general-purpose register by the contents of another general-purpose register and
stores the result in a third general-purpose register.

Note: The divw instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 491

31 Rc

PowerPC
divw RT, RA, RB
divw. RT, RA, RB
divwo RT, RA, RB
divwo. RT, RA, RB

Description
The divw instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as
signed integers.

For the case of -2**31 / -1, and all other cases that cause overflow, the content of GPR RT is undefined.

The divw instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

divw 0 None 0 None

divw. 0 None 1 LT,GT,EQ,SO

divwo 1 SO, OV 0 None

divwo. 1 SO, OV 1 LT,GT,EQ,SO

The four syntax forms of the divw instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 175

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for dividend.
RB Specifies source general-purpose register for divisor.

Examples
1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:
Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
divw 4,4,6
GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0002.
Assume GPR 6 contains 0x0000 0002.
divw. 4,4,6
GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:
Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0000.
divwo 4,4,6
GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 6 contains 0xFFFF FFFF.
divwo. 4,4,6
GPR 4 now contains undefined quantity.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

divwu (Divide Word Unsigned) Instruction

Purpose
Divides the contents of a general-purpose register by the contents of another general-purpose register and
stores the result in a third general-purpose register.

Note: The divwu instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

176 Assembler Language Reference

Bits Value

11-15 RA

16-20 RB

21 OE

22-30 459

31 Rc

PowerPC
divwu RT, RA, RB
divwu. RT, RA, RB
divwuo RT, RA, RB
divwuo. RT, RA, RB

Description
The divwu instruction divides the contents of general-purpose register (GPR) RA by the contents of GPR
RB, and stores the result in the target GPR RT. The dividend, divisor, and quotient are interpreted as
unsigned integers.

For the case of division by 0, the content of GPR RT is undefined.

Note: Although the operation treats the result as an unsigned integer, if Rc is 1, the Less Than (LT)
zero, Greater Than (GT) zero, and Equal To (EQ) zero bits of Condition Register Field 0 are set as if
the result were interpreted as a signed integer.

The divwu instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

divwu 0 None 0 None

divwu. 0 None 1 LT,GT,EQ,SO

divwuo 1 SO, OV, 0 None

divwuo. 1 SO, OV 1 LT,GT,EQ,SO

The four syntax forms of the divwu instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code divides the contents of GPR 4 by the contents of GPR 6 and stores the result in

GPR 4:

Chapter 8. Instruction Set 177

Assume GPR 4 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0002.
divwu 4,4,6
GPR 4 now contains 0x0000 0000.

2. The following code divides the contents of GPR 4 by the contents of GPR 6, stores the result in GPR
4 and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0002.
Assume GPR 6 contains 0x0000 0002.
divwu. 4,4,6
GPR 4 now contains 0x0000 0001.

3. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to reflect
the result of the operation:
Assume GPR 4 contains 0x0000 0001.
Assume GPR 6 contains 0x0000 0000.
divwuo 4,4,6
GPR 4 now contains an undefined quantity.

4. The following code divides the contents of GPR 4 by the contents of GPR 6, places the result in GPR
4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 6 contains 0x0000 0002.
divwuo. 4,4,6
GPR 4 now contains 0x4000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

doz (Difference or Zero) Instruction

Purpose
Computes the difference between the contents of two general-purpose registers and stores the result or
the value zero in a general-purpose register.

Note: The doz instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 264

31 Rc

POWER family
doz RT, RA, RB
doz. RT, RA, RB

178 Assembler Language Reference

POWER family
dozo RT, RA, RB
dozo. RT, RA, RB

Description
The doz instruction adds the complement of the contents of general-purpose register (GPR) RA, 1, and
the contents of GPR RB, and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the value in GPR RB, then GPR RT is set to 0.

The doz instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

doz 0 None 0 None

doz. 0 None 1 LT,GT,EQ,SO

dozo 1 SO,OV 0 None

dozo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the doz instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register; the Overflow (OV) bit can
only be set on positive overflows. If the syntax form sets the Record (Rc) bit to 1, the instruction effects
the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code determines the difference between the contents of GPR 4 and GPR 6 and stores

the result in GPR 4:
Assume GPR 4 holds 0x0000 0001.
Assume GPR 6 holds 0x0000 0002.
doz 4,4,6
GPR 4 now holds 0x0000 0001.

2. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 0001.
Assume GPR 6 holds 0x0000 0000.
doz. 4,4,6
GPR 4 now holds 0x0000 0000.

3. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception
Register to reflect the result of the operation:

Chapter 8. Instruction Set 179

Assume GPR 4 holds 0x0000 0002.
Assume GPR 6 holds 0x0000 0008.
dozo 4,4,6
GPR 4 now holds 0x0000 0006.

4. The following code determines the difference between the contents of GPR 4 and GPR 6, stores the
result in GPR 4, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0xEFFF FFFF.
Assume GPR 6 holds 0x0000 0000.
dozo. 4,4,6
GPR 4 now holds 0x1000 0001.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

dozi (Difference or Zero Immediate) Instruction

Purpose
Computes the difference between the contents of a general-purpose register and a signed 16-bit integer
and stores the result or the value zero in a general-purpose register.

Note: The dozi instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 09

6-10 RT

11-15 RA

16-31 SI

POWER family
dozi RT, RA, SI

Description
The dozi instruction adds the complement of the contents of general-purpose register (GPR) RA, the
16-bit signed integer SI, and 1 and stores the result in the target GPR RT.

If the value in GPR RA is algebraically greater than the 16-bit signed value in the SI field, then GPR RT is
set to 0.

The dozi instruction has one syntax form and does not effect Condition Register Field 0 or the Fixed-Point
Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
SI Specifies signed 16-bit integer for operation.

180 Assembler Language Reference

Examples
The following code determines the difference between GPR 4 and 0x0 and stores the result in GPR 4:
Assume GPR 4 holds 0x0000 0001.
dozi 4,4,0x0
GPR 4 now holds 0x0000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

eciwx (External Control In Word Indexed) Instruction

Purpose
Translates the effective address (EA) to a real address, sends the real address to a controller, and loads
the word returned by the controller into a register.

Note: The eciwx instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC
Microprocessor, and PowerPC 604 RISC Microprocessor.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 310

31 /

eciwx RT, RA, RB

Description
The eciwx instruction translates EA to a real address, sends the real address to a controller, and places
the word returned by the controller in general-purpose register RT. If RA = 0, the EA is the content of RB,
otherwise EA is the sum of the content of RA plus the content of RB.

If EAR(E) = 1, a load request for the real address corresponding to EA is sent to the controller identified
by EAR(RID), bypassing the cache. The word returned by the controller is placed in RT.

Notes:

1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly
undefined.

2. The operation is treated as a load to the addressed byte with respect to protection.

Parameters

RT Specifies target general-purpose register where result of operation is stored.

Chapter 8. Instruction Set 181

RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Related Information
The ecowx (External Control Out Word Indexed) instruction.

Processing and Storage

ecowx (External Control Out Word Indexed) Instruction

Purpose
Translates the effective address (EA) to a real address and sends the real address and the contents of a
register to a controller.

Note: The ecowx instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 601 RISC Microprocessor, PowerPC 603 RISC
Microprocessor, and PowerPC 604 RISC Microprocessor.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 438

31 /

ecowx RS, RA, RB

Description
The ecowx instruction translates EA to a real address and sends the real address and the content of
general-purpose register RS to a controller. If RA = 0, the EA is the content of RB, otherwise EA is the
sum of the content of RA plus the content of RB.

If EAR(E) = 1, a store request for the real address corresponding to EA is sent to the controller identified
by EAR(RID), bypassing the cache. The content of RS is sent with the store request.

Notes:

1. EA must be a multiple of 4 (a word-aligned address); otherwise, the result is boundedly
undefined.

2. The operation is treated as a store to the addressed byte with respect to protection.

Parameters

RS Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

182 Assembler Language Reference

Related Information
The eciwx (External Control In Word Indexed) instruction.

Processing and Storage

eieio (Enforce In-Order Execution of I/O) Instruction

Purpose
Ensures that cache-inhibited storage accesses are performed in main memory in the order specified by the
program.

Note: The eieio instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 ///

21-30 854

31 /

PowerPC

eieio

Description
The eieio instruction provides an ordering function that ensures that all load and store instructions initiated
prior to the eieio instruction complete in main memory before any loads or stores subsequent to the eieio
instruction access memory. If the eieio instruction is omitted from a program, and the memory locations
are unique, the accesses to main storage may be performed in any order.

Note: The eieio instruction is appropriate for cases where the only requirement is to control the order
of storage references as seen by I/O devices. However, the sync (Synchronize) instruction provides
an ordering function for all instructions.

The eieio instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Examples
The following code ensures that, if the memory locations are in cache-inhibited storage, the load from
location AA and the store to location BB are completed in main storage before the content of location CC is
fetched or the content of location DD is updated:
lwz r4,AA(r1)
stw r4,BB(r1)
eieio
lwz r5,CC(r1)
stw r5,DD(r1)

Chapter 8. Instruction Set 183

Note: If the memory locations of AA, BB, CC, and DD are not in cache-inhibited memory, the eieio
instruction has no effect on the order that instructions access memory.

Related Information
The sync (Synchronize) or dcs (Data Cache Synchronize) instruction.

Processing and Storage

extsw (Extend Sign Word) Instruction

Purpose
Copy the low-order 32 bits of a general purpose register into another general purpose register, and sign
extend the fullword to a double-word in size (64 bits).

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 00000

21-30 986

31 Rc

PowerPC
extsw RA, RS (Rc=0)
extsw. RA, RS(Rc=1)

Description
The contents of the low-order 32 bits of general purpose register (GPR) RS are placed into the low-order
32 bits of GPR RA. Bit 32 of GPR RS is used to fill the high-order 32 bits of GPR RA.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

Parameters

RA Specifies the target general purpose register for the result of the operation.
RS Specifies the source general purpose register for the operand of instruction.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

184 Assembler Language Reference

eqv (Equivalent) Instruction

Purpose
Logically XORs the contents of two general-purpose registers and places the complemented result in a
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 284

31 Rc

eqv RA, RS, RB
eqv. RA, RS, RB

Description
The eqv instruction logically XORs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and stores the complemented result in the target GPR RA.

The eqv instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

eqv None None 0 None

eqv. None None 1 LT,GT,EQ,SO

The two syntax forms of the eqv instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code logically XORs the contents of GPR 4 and GPR 6 and stores the complemented

result in GPR 4:
Assume GPR 4 holds 0xFFF2 5730.
Assume GPR 6 holds 0x7B41 92C0.
eqv 4,4,6
GPR 4 now holds 0x7B4C 3A0F.

Chapter 8. Instruction Set 185

2. The following code XORs the contents of GPR 4 and GPR 6, stores the complemented result in GPR
4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 00FD.
Assume GPR 6 holds 0x7B41 92C0.
eqv. 4,4,6
GPR 4 now holds 0x84BE 6DC2.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

extsb (Extend Sign Byte) Instruction

Purpose
Extends the sign of the low-order byte.

Note: The extsb instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21-30 954

31 Rc

PowerPC
extsb RA, RS
extsb. RA, RS

Description
The extsb instruction places bits 24-31 of general-purpose register (GPR) RS into bits 24-31 of GPR RA
and copies bit 24 of register RS in bits 0-23 of register RA.

The extsb instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater
Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register of containing the byte to be extended.

186 Assembler Language Reference

Examples
1. The following code extends the sign of the least significant byte contained in GPR 4 and places the

result in GPR 6:
Assume GPR 6 holds 0x5A5A 5A5A.
extsb 4,6
GPR 6 now holds 0x0000 005A.

2. The following code extends the sign of the least significant byte contained in GPR 4 and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0xA5A5 A5A5.
extsb. 4,4
GPR 4 now holds 0xFFFF FFA5.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

extsh or exts (Extend Sign Halfword) Instruction

Purpose
Extends the lower 16-bit contents of a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 ///

21 OE

22-30 922

31 Rc

PowerPC
extsh RA, RS
extsh. RA, RS

POWER family
exts RA, RS
exts. RA, RS

Description
The extsh and exts instructions place bits 16-31 of general-purpose register (GPR) RS into bits 16-31 of
GPR RA and copy bit 16 of GPR RS in bits 0-15 of GPR RA.

The extsh and exts instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Chapter 8. Instruction Set 187

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

extsh None None 0 None

extsh. None None 1 LT,GT,EQ,SO

exts None None 0 None

exts. None None 1 LT,GT,EQ,SO

The two syntax forms of the extsh instruction, and the two syntax forms of the extsh instruction, never
affect the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction
affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow
(SO) bits in Condition Register Field 0.

Parameters

RA Specifies general-purpose register receives extended integer.
RS Specifies source general-purpose register for operation.

Examples
1. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4 and copies bit 16 of GPR 6

into bits 0-15 of GPR 4:
Assume GPR 6 holds 0x0000 FFFF.
extsh 4,6
GPR 6 now holds 0xFFFF FFFF.

2. The following code places bits 16-31 of GPR 6 into bits 16-31 of GPR 4, copies bit 16 of GPR 6 into
bits 0-15 of GPR 4, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 2FFF.
extsh. 6,4
GPR 6 now holds 0x0000 2FFF.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

fabs (Floating Absolute Value) Instruction

Purpose
Stores the absolute value of the contents of a floating-point register in another floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 264

31 Rc

188 Assembler Language Reference

fabs FRT, FRB
fabs. FRT, FRB

Description
The fabs instruction sets bit 0 of floating-point register (FPR) FRB to 0 and places the result into FPR
FRT.

The fabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fabs None 0 None

fabs. None 1 FX,FEX,VX,OX

The two syntax forms of the fabs instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception Summary
(FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid Operation Exception
Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code sets bit 0 of FPR 4 to zero and place sthe result in FPR 6:

Assume FPR 4 holds 0xC053 4000 0000 0000.
fabs 6,4
GPR 6 now holds 0x4053 4000 0000 0000.

2. The following code sets bit 0 of FPR 25 to zero, places the result in FPR 6, and sets Condition
Register Field 1 to reflect the result of the operation:
Assume FPR 25 holds 0xFFFF FFFF FFFF FFFF.
fabs. 6,25
GPR 6 now holds 0x7FFF FFFF FFFF FFFF.

Related Information
Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

fadd or fa (Floating Add) Instruction

Purpose
Adds two floating-point operands and places the result in a floating-point register.

Chapter 8. Instruction Set 189

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 21

31 Rc

PowerPC
fadd FRT, FRA, FRB
fadd. FRT, FRA, FRB

POWER family
fa FRT, FRA, FRB
fa. FRT, FRA, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 21

31 Rc

PowerPC
fadds FRT, FRA, FRB
fadds. FRT, FRA, FRB

Description
The fadd and fa instructions add the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB.

The fadds instruction adds the 32-bit single-precision floating-point operand in FPR FRA to the 32-bit
single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in FPR FRT.

Addition of two floating-point numbers is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the significand accompanying the
smaller exponent is shifted right, with its exponent increased by one for each bit shifted, until the two
exponents are equal. The two significands are then added algebraically to form the intermediate sum. All
53 bits in the significand as well as all three guard bits (G, R and X) enter into the computation.

190 Assembler Language Reference

The Floating-Point Result Field of the Floating-Point Status and Control Register is set to the class and
sign of the result except for Invalid Operation exceptions when the Floating-Point Invalid Operation
Exception Enable (VE) bit of the Floating-Point Status and Control Register is set to 1.

The fadd, fadds, and fa instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fadd C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fadd. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fadds C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fadds. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fa C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fa. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

All syntax forms of the fadd, fadds, and fa instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception Summary (FX), Floating-Point Enabled Exception Summary (FEX), Floating-Point Invalid
Operation Exception Summary (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register
Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code adds the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets the

Floating-Point Status and Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
fadd 6,4,5
FPR 6 now contains 0xC052 6000 0000 0000.

2. The following code adds the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets
Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the
operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.
fadd. 6,4,25
GPR 6 now contains 0xFFFF FFFF FFFF FFFF.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Chapter 8. Instruction Set 191

Interpreting the Contents of a Floating-Point Register .

fcfid (Floating Convert from Integer Double Word) Instruction

Purpose
Convert the fixed-point contents of a floating-point register to a double-precision floating-point number.

Syntax

Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 846

31 Rc

PowerPC
fcfid FRT, FRB (Rc=0)
fcfid. FRT, FRB (Rc=1)

Description
The 64-bit signed fixed-point operand in floating-point register (FPR) FRB is converted to an infinitely
precise floating-point integer. The result of the conversion is rounded to double-precision using the
rounding mode specified by FPSCR[RN] and placed into FPR FRT.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is incremented
when rounded. FPSCR[FI] is set if the result is inexact.

The fcfid instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fcfid FPRF,FR,FI,FX,XX 0 None

fcfid. FPRF,FR,FI,FX,XX 1 FX,FEX,VX,OX

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

192 Assembler Language Reference

fcmpo (Floating Compare Ordered) Instruction

Purpose
Compares the contents of two floating-point registers.

Syntax

Bits Value

0-5 63

6-8 BF

9-10 //

11-15 FRA

16-20 FRB

21-30 32

31 /

fcmpo BF, FRA, FRB

Description
The fcmpo instruction compares the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA to the 64-bit, double-precision floating-point operand in FPR FRB. The Floating-Point
Condition Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect
the value of the operand FPR FRA with respect to operand FPR FRB. The value BF determines which
field in the condition register receives the four FPCC bits.

Consider the following when using the fcmpo instruction:

v If one of the operands is either a Quiet NaN (QNaN) or a Signaling NaN (SNaN), the Floating-Point
Condition Code is set to reflect unordered (FU).

v If one of the operands is a SNaN, then the Floating-Point Invalid Operation Exception bit VXSNAN of
the Floating-Point Status and Control Register is set. Also:

– If Invalid Operation is disabled (that is, the Floating-Point Invalid Operation Exception Enable bit of
the Floating-Point Status and Control Register is 0), then the Floating-Point Invalid Operation
Exception bit VXVC is set (signaling an an invalid compare).

– If one of the operands is a QNaN, then the Floating-Point Invalid Operation Exception bit VXVC is
set.

The fcmpo instruction has one syntax form and always affects the FT, FG, FE, FU, VXSNAN, and VXVC
bits in the Floating-Point Status and Control Register.

Parameters

BF Specifies field in the condition register that receives the four FPCC bits.
FRA Specifies source floating-point register.
FRB Specifies source floating-point register.

Examples
The following code compares the contents of FPR 4 and FPR 6 and sets Condition Register Field 1 and
the Floating-Point Status and Control Register to reflect the result of the operation:

Chapter 8. Instruction Set 193

Assume CR = 0 and FPSCR = 0.
Assume FPR 5 contains 0xC053 4000 0000 0000.
Assume FPR 4 contains 0x400C 0000 0000 0000.
fcmpo 6,4,5
CR now contains 0x0000 0040.
FPSCR now contains 0x0000 4000.

Related Information
Floating-Point Processor .

Floating-Point Compare Instructions .

fcmpu (Floating Compare Unordered) Instruction

Purpose
Compares the contents of two floating-point registers.

Syntax

Bits Value

0-5 63

6-8 BF

9-10 //

11-15 FRA

16-20 FRB

21-30 0

31 /

fcmpu BF, FRA, FRB

Description
The fcmpu instruction compares the 64-bit double precision floating-point operand in floating-point register
(FPR) FRA to the 64-bit double precision floating-point operand in FPR FRB. The Floating-Point Condition
Code Field (FPCC) of the Floating-Point Status and Control Register (FPSCR) is set to reflect the value of
the operand FRA with respect to operand FRB. The value BF determines which field in the condition
register receives the four FPCC bits.

Consider the following when using the fcmpu instruction:

v If one of the operands is either a Quiet NaN or a Signaling NaN, the Floating-Point Condition Code is
set to reflect unordered (FU).

v If one of the operands is a Signaling NaN, then the Floating-Point Invalid Operation Exception bit
VXSNAN of the Floating-Point Status and Control Register is set.

The fcmpu instruction has one syntax form and always affects the FT, FG, FE, FU, and VXSNAN bits in
the FPSCR.

Parameters

BF Specifies a field in the condition register that receives the four FPCC bits.
FRA Specifies source floating-point register.

194 Assembler Language Reference

FRB Specifies source floating-point register.

Examples
The following code compares the contents of FPR 5 and FPR 4:
Assume FPR 5 holds 0xC053 4000 0000 0000.
Assume FPR 4 holds 0x400C 0000 0000 0000.
Assume CR = 0 and FPSCR = 0.
fcmpu 6,4,5
CR now contains 0x0000 0040.
FPSCR now contains 0x0000 4000.

Related Information
Floating-Point Processor .

Floating-Point Compare Instructions .

fctid (Floating Convert to Integer Double Word) Instruction

Purpose
Convert the contents of a floating-point register to a 64-bit signed fixed-point integer, placing the results
into another floating-point register.

Syntax

Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 814

31 Rc

PowerPC
fctid FRT, FRB (Rc=0)
fctid. FRT, FRB (Rc=1)

Description
The floating-point operand in floating-point register (FPR) FRB is converted to a 64-bit signed fixed-point
integer, using the rounding mode specified by FPSCR[RN], and placed into FPR FRT.

If the operand in FRB is greater than 2**63 - 1, then FPR FRT is set to 0x7FFF_FFFF_FFFF_FFFF. If the
operand in FRB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

The fctid instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Chapter 8. Instruction Set 195

Syntax
Form

Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fctid FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fctid. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,OX

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

fctidz (Floating Convert to Integer Double Word with Round toward
Zero) Instruction

Purpose
Convert the contents of a floating-point register to a 64-bit signed fixed-point integer using the
round-toward-zero rounding mode. Place the results into another floating-point register.

Syntax

Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-30 815

31 Rc

PowerPC
fctidz FRT, FRB (Rc=0)
fctidz. FRT, FRB (Rc=1)

Description
The floating-point operand in floating-point register (FRP) FRB is converted to a 64-bit signed fixed-point
integer, using the rounding mode round toward zero, and placed into FPR FRT.

If the operand in FPR FRB is greater than 2**63 - 1, then FPR FRT is set to 0x7FFF_FFFF_FFFF_FFFF.
If the operand in frB is less than 2**63 , then FPR FRT is set to 0x8000_0000_0000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is set if the
result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

The fctidz instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

196 Assembler Language Reference

Syntax
Form

Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fctidz FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 0 None

fctidz. FPRF(undefined),FR,FI,FX,XX,VXSNAN,VXCVI 1 FX,FEX,VX,OX

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

fctiw or fcir (Floating Convert to Integer Word) Instruction

Purpose
Converts a floating-point operand to a 32-bit signed integer.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 14

31 Rc

PowerPC
fctiw FRT, FRB
fctiw. FRT, FRB

POWER2
fcir FRT, FRB
fcir. FRT, FRB

Description
The fctiw and fcir instructions convert the floating-point operand in floating-point register (FPR) FRB to a
32-bit signed, fixed-point integer, using the rounding mode specified by Floating-Point Status and Control
Register (FPSCR) RN. The result is placed in bits 32-63 of FPR FRT. Bits 0-31 of FPR FRT are
undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to 0x7FFF
FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000
0000.

Chapter 8. Instruction Set 197

The fctiw and fcir instruction each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fctiw C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fctiw. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

fcir C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fcir. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

The syntax forms of the fctiw and fcir instructions always affect the FPSCR. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX), Floating-Point Enabled
Exception (FEX), Floating-Point Invalid Operation Exception (VX), and Floating-Point Overflow Exception
(OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are undefined.

Parameters

FRT Specifies the floating-point register where the integer result is placed.
FRB Specifies the source floating-point register for the floating-point operand.

Examples
The following code converts a floating-point value into an integer for use as an index in an array of
floating-point values:
Assume GPR 4 contains the address of the first element of
the array.
Assume GPR 1 contains the stack pointer.
Assume a doubleword TEMP variable is allocated on the stack
for use by the conversion routine.
Assume FPR 6 contains the floating-point value for conversion
into an index.
fctiw 5,6 # Convert floating-point value

to integer.
stfd 5,TEMP(1) # Store to temp location.
lwz 3,TEMP+4(1) # Get the integer part of the

doubleword.
lfd 5,0(3) # Get the selected array element.
FPR 5 now contains the selected array element.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero)
Instruction

Purpose
Converts a floating-point operand to a 32-bit signed integer, rounding the result towards 0.

198 Assembler Language Reference

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 15

31 Rc

PowerPC
fctiwz FRT, FRB
fctiwz. FRT, FRB

POWER2
fcirz FRT, FRB
fcirz. FRT, FRB

Description
The fctiwz and fcirz instructions convert the floating-point operand in floating-point register (FPR) FRB to
a 32-bit, signed, fixed-point integer, rounding the operand toward 0. The result is placed in bits 32-63 of
FPR FRT. Bits 0-31 of FPR FRT are undefined.

If the operand in FPR FRB is greater than 231 - 1, then the bits 32-63 of FPR FRT are set to 0x7FFF
FFFF. If the operand in FPR FRB is less than -231, then the bits 32-63 of FPR FRT are set to 0x8000
0000.

The fctiwz and fcirz instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fctiwz C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fctiwz. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

fcirz C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 0 None

fcirz. C,FL,FG,FE,FU,FR,FI,FX,XX,VXCVI, VXSNAN 1 FX,FEX,VX,OX

The syntax forms of the fctiwz and fcirz instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1. FPSCR(C,FI,FG,FE,FU) are
undefined.

Parameters

FRT Specifies the floating-point register where the integer result is placed.
FRB Specifies the source floating-point register for the floating-point operand.

Chapter 8. Instruction Set 199

Examples
The following code adds a floating-point value to an array element selected based on a second
floating-point value. If value2 is greater than or equal to n, but less than n+1, add value1 to the nth
element of the array:
Assume GPR 4 contains the address of the first element of
the array.
Assume GPR 1 contains the stack pointer.
Assume a doubleword TEMP variable is allocated on the stack
for use by the conversion routine.
Assume FPR 6 contains value2.
Assume FPR 4 contains value1.
fctiwz 5,6 # Convert value2 to integer.
stfd 5,TEMP(1) # Store to temp location.
lwz 3,TEMP+4(1) # Get the integer part of the

doubleword.
lfdx 5,3,4 # Get the selected array element.
fadd 5,5,4 # Add value1 to array element.
stfd 5,3,4 # Save the new value of the

array element.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fdiv or fd (Floating Divide) Instruction

Purpose
Divides one floating-point operand by another.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 18

31 Rc

PowerPC
fdiv FRT, FRA, FRB
fdiv. FRT, FRA, FRB

POWER family
fd FRT, FRA, FRB
fd. FRT, FRA, FRB

200 Assembler Language Reference

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 18

31 Rc

PowerPC
fdivs FRT, FRA, FRB
fdivs. FRT, FRA, FRB

Description
The fdiv and fd instructions divide the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRB. No remainder is
preserved.

The fdivs instruction divides the 32-bit single-precision floating-point operand in FPR FRA by the 32-bit
single-precision floating-point operand in FPR FRB. No remainder is preserved.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register (FPSCR), and is placed in the target FPR FRT.

The floating-point division operation is based on exponent subtraction and division of the two significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fdiv, fdivs, and fd instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fdiv C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fdiv. C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

fdivs C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fdivs. C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

fd C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

0 None

fd. C,FL,FG,FE,FU,FR,FI,OX,UX,
ZX,XX,VXSNAN,VXIDI,VXZDZ

1 FX,FEX,VX,OX

Chapter 8. Instruction Set 201

All syntax forms of the fdiv, fdivs, and fd instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register containing the dividend.
FRB Specifies source floating-point register containing the divisor.

Examples
1. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,

and sets the Floating-Point Status and Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.
fdiv 6,4,5
FPR 6 now contains 0xC036 0000 0000 0000.
FPSCR now contains 0x0000 8000.

2. The following code divides the contents of FPR 4 by the contents of FPR 5, places the result in FPR 6,
and sets Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the
result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.
fdiv. 6,4,5
FPR 6 now contains 0xC036 0000 0000 0000.
FPSCR now contains 0x0000 8000.
CR contains 0x0000 0000.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fmadd or fma (Floating Multiply-Add) Instruction

Purpose
Adds one floating-point operand to the result of multiplying two floating-point operands without an
intermediate rounding operation.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

202 Assembler Language Reference

Bits Value

16-20 FRB

21-25 FRC

26-30 29

31 Rc

PowerPC
fmadd FRT, FRA, FRC, FRB
fmadd. FRT, FRA, FRC, FRB

POWER family
fma FRT, FRA, FRC, FRB
fma. FRT, FRA, FRC, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 29

31 Rc

PowerPC
fmadds FRT, FRA, FRC, FRB
fmadds. FRT, FRA, FRC, FRB

Description
The fmadd and fma instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC, and then add the
result of this operation to the 64-bit, double-precision floating-point operand in FPR FRB.

The fmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC and adds the result of this operation to the
32-bit, single-precision floating-point operand in FPR FRB.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmadd, fmadds, and fm instructions each have two syntax forms. Each syntax form has a different
effect on Condition Register Field 1.

Chapter 8. Instruction Set 203

Syntax Form Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fmadd, fmadds, and fm instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register containing a multiplier.
FRB Specifies source floating-point register containing the addend.
FRC Specifies source floating-point register containing a multiplier.

Examples
1. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places

the result in FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the
operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33C 110A.
Assume FPSCR = 0.
fmadd 6,4,5,7
FPR 6 now contains 0xC070 D7FF FFFF F6CB.
FPSCR now contains 0x8206 8000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the contents of FPR 7, places
the result in FPR 6, and sets the Floating-Point Status and Control Register and Condition Register
Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33C 110A.
Assume FPSCR = 0 and CR = 0.
fmadd. 6,4,5,7
FPR 6 now contains 0xC070 D7FF FFFF F6CB.
FPSCR now contains 0x8206 8000.
CR now contains 0x0800 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

204 Assembler Language Reference

fmr (Floating Move Register) Instruction

Purpose
Copies the contents of one floating-point register into another floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 72

31 Rc

fmr FRT, FRB
fmr. FRT, FRB

Description
The fmr instruction places the contents of floating-point register (FPR) FRB into the target FPR FRT.

The fmr instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fmr None 0 None

fmr. None 1 FX,FEX,VX,OX

The two syntax forms of the fmr instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code copies the contents of FPR 4 into FPR 6 and sets the Floating-Point Status and

Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPSCR = 0.
fmr 6,4
FPR 6 now contains 0xC053 4000 0000 0000.
FPSCR now contains 0x0000 0000.

2. The following code copies the contents of FPR 25 into FPR 6 and sets the Floating-Point Status and
Control Register and Condition Register Field 1 to reflect the result of the operation:

Chapter 8. Instruction Set 205

Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.
Assume FPSCR = 0 and CR = 0.
fmr. 6,25
FPR 6 now contains 0xFFFF FFFF FFFF FFFF.
FPSCR now contains 0x0000 0000.
CR now contains 0x0000 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Floating-Point Move Instructions .

fmsub or fms (Floating Multiply-Subtract) Instruction

Purpose
Subtracts one floating-point operand from the result of multiplying two floating-point operands without an
intermediate rounding operation.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 28

31 Rc

PowerPC
fmsub FRT, FRA, FRC, FRB
fmsub. FRT, FRA, FRC, FRB

POWER family
fms FRT, FRA, FRC, FRB
fms. FRT, FRA, FRC, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 28

31 Rc

206 Assembler Language Reference

PowerPC
fmsubs FRT, FRA, FRC, FRB
fmsubs. FRT, FRA, FRC, FRB

Description
The fmsub and fms instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC and subtract the
64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication.

The fmsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC and subtracts the 32-bit, single-precision
floating-point operand in FPR FRB from the result of the multiplication.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmsub, fmsubs, and fms instructions each have two syntax forms. Each syntax form has a different
effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

fmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

fms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 0 None

fms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXSI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fmsub, fmsubs, and fms instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register containing a multiplier.
FRB Specifies source floating-point register containing the quantity to be subtracted.
FRC Specifies source floating-point register containing a multiplier.

Chapter 8. Instruction Set 207

Examples
1. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and
Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0.
fmsub 6,4,5,7
FPR 6 now contains 0xC070 D800 0000 0935.
FPSCR now contains 0x8202 8000.

2. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the product of the multiplication, places the result in FPR 6, and sets the Floating-Point Status and
Control Register and Condition Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.
fmsub. 6,4,5,7
FPR 6 now contains 0xC070 D800 0000 0935.
FPSCR now contains 0x8202 8000.
CR now contains 0x0800 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fmul or fm (Floating Multiply) Instruction

Purpose
Multiplies two floating-point operands.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 ///

21-25 FRC

26-30 25

31 Rc

PowerPC
fmul FRT, FRA, FRC
fmul. FRT, FRA, FRC

POWER family
fm FRT, FRA, FRC
fm. FRT, FRA, FRC

208 Assembler Language Reference

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 ///

21-25 FRC

26-30 25

31 Rc

PowerPC
fmuls FRT, FRA, FRC
fmuls. FRT, FRA, FRC

Description
The fmul and fm instructions multiply the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRA by the 64-bit, double-precision floating-point operand in FPR FRC.

The fmuls instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

Multiplication of two floating-point numbers is based on exponent addition and multiplication of the two
significands.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fmul, fmuls, and fm instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fmul C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

0 None

fmul. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

fmuls C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

0 None

fmuls. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

fm C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

0 None

fm. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXIMZ

1 FX,FEX,VX,OX

Chapter 8. Instruction Set 209

All syntax forms of the fmul, fmuls, and fm instructions always affect the Floating-Point Status and
Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRC Specifies source floating-point register for operation.

Examples
1. The following code multiplies the contents of FPR 4 and FPR 5, places the result in FPR 6, and sets

the Floating-Point Status and Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.
fmul 6,4,5
FPR 6 now contains 0xC070 D800 0000 0000.
FPSCR now contains 0x0000 8000.

2. The following code multiplies the contents of FPR 4 and FPR 25, places the result in FPR 6, and sets
Condition Register Field 1 and the Floating-Point Status and Control Register to reflect the result of the
operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 25 contains 0xFFFF FFFF FFFF FFFF.
Assume FPSCR = 0 and CR = 0.
fmul. 6,4,25
FPR 6 now contains 0xFFFF FFFF FFFF FFFF.
FPSCR now contains 0x0001 1000.
CR now contains 0x0000 0000.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fnabs (Floating Negative Absolute Value) Instruction

Purpose
Negates the absolute contents of a floating-point register and places the result in another floating-point
register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 136

210 Assembler Language Reference

Bits Value

31 /

fnabs FRT, FRB
fnabs. FRT, FRB

Description
The fnabs instruction places the negative absolute of the contents of floating-point register (FPR) FRB
with bit 0 set to 1 into the target FPR FRT.

The fnabs instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax
Form

Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fnabs None 0 None

fnabs. None 1 FX,FEX,VX,OX

The two syntax forms of the fnabs instruction never affect the Floating-Point Status and Control Register.
If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code negates the absolute contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.
fnabs 6,5
FPR 6 now contains 0xC00C 0000 0000 0000.

2. The following code negates the absolute contents of FPR 4, places the result into FPR 6, and sets
Condition Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume CR = 0.
fnabs. 6,4
FPR 6 now contains 0xC053 4000 0000 0000.
CR now contains 0x0.

Related Information
Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

Chapter 8. Instruction Set 211

fneg (Floating Negate) Instruction

Purpose
Negates the contents of a floating-point register and places the result into another floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 40

31 Rc

fneg FRT, FRB
fneg. FRT, FRB

Description
The fneg instruction places the negated contents of floating-point register FRB into the target FPR FRT.

The fneg instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fneg None 0 None

fneg. None 1 FX,FEX,VX,OX

The two syntax forms of the fneg instruction never affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code negates the contents of FPR 5 and places the result into FPR 6:

Assume FPR 5 contains 0x400C 0000 0000 0000.
fneg 6,5
FPR 6 now contains 0xC00C 0000 0000 0000.

2. The following code negates the contents of FPR 4, places the result into FPR 6, and sets Condition
Register Field 1 to reflect the result of the operation:

212 Assembler Language Reference

Assume FPR 4 contains 0xC053 4000 0000 0000.
fneg. 6,4
FPR 6 now contains 0x4053 4000 0000 0000.
CR now contains 0x0000 0000.

Related Information
Floating-Point Processor .

Floating-Point Move Instructions .

Interpreting the Contents of a Floating-Point Register .

fnmadd or fnma (Floating Negative Multiply-Add) Instruction

Purpose
Multiplies two floating-point operands, adds the result to one floating-point operand, and places the
negative of the result in a floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 31

31 Rc

PowerPC
fnmadd FRT, FRA, FRC, FRB
fnmadd. FRT, FRA, FRC, FRB

POWER family
fnma FRT, FRA, FRC, FRB
fnma. FRT, FRA, FRC, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 31

31 Rc

Chapter 8. Instruction Set 213

PowerPC
fnmadds FRT, FRA, FRC, FRB
fnmadds. FRT, FRA, FRC, FRB

Description
The fnmadd and fnma instructions multiply the 64-bit, double-precision floating-point operand in
floating-point register (FPR) FRA by the 64,bit, double-precision floating-point operand in FPR FRC, and
add the 64-bit, double-precision floating-point operand in FPR FRB to the result of the multiplication.

The fnmadds instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC, and adds the 32-bit, single-precision
floating-point operand in FPR FRB to the result of the multiplication.

The result of the addition is rounded under control of the Floating-Point Rounding Control Field RN of the
Floating-Point Status and Control Register.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The fnmadd and fnma instructions are identical to the fmadd and fma (Floating Multiply- Add Single)
instructions with the final result negated, but with the following exceptions:

v Quiet NaNs (QNaNs) propagate with no effect on their ″sign″ bit.

v QNaNs that are generated as the result of a disabled Invalid Operation Exception have a ″sign″ bit of 0.

v Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their ″sign″ bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fnmadd, fnmadds, and fnma instructions each have two syntax forms. Each syntax form has a
different effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fnmadd C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmadd. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnmadds C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmadds. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnma C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnma. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fnmadd, fnmadds, and fnma instructions always affect the Floating-Point Status
and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation
Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact
value may result.

214 Assembler Language Reference

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.
FRC Specifies source floating-point register for operation.

Examples
1. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR

7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register to reflect
the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0.
fnmadd 6,4,5,7
FPR 6 now contains 0x4070 D7FF FFFF F6CB.
FPSCR now contains 0x8206 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, adds the result to the contents of FPR
7, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register and
Condition Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.
fnmadd. 6,4,5,7
FPR 6 now contains 0x4070 D7FF FFFF F6CB.
FPSCR now contains 0x8206 4000.
CR now contains 0x0800 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction

Purpose
Multiplies two floating-point operands, subtracts one floating-point operand from the result, and places the
negative of the result in a floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 30

31 Rc

Chapter 8. Instruction Set 215

PowerPC
fnmsub FRT, FRA, FRC, FRB
fnmsub. FRT, FRA, FRC, FRB

POWER family
fnms FRT, FRA, FRC, FRB
fnms. FRT, FRA, FRC, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30

30 Rc

PowerPC
fnmsubs FRT, FRA, FRC, FRB
fnmsubs. FRT, FRA, FRC, FRB

Description
The fnms and fnmsub instructions multiply the 64-bit, double-precision floating-point operand in
floating-point register (FPR) FRA by the 64,-bit double-precision floating-point operand in FPR FRC,
subtract the 64-bit, double-precision floating-point operand in FPR FRB from the result of the multiplication,
and place the negated result in the target FPR FRT.

The fnmsubs instruction multiplies the 32-bit, single-precision floating-point operand in FPR FRA by the
32-bit, single-precision floating-point operand in FPR FRC, subtracts the 32-bit, single-precision
floating-point operand in FPR FRB from the result of the multiplication, and places the negated result in
the target FPR FRT.

The subtraction result is rounded under control of the Floating-Point Rounding Control Field RN of the
Floating-Point Status and Control Register.

Note: If an operand is a denormalized number, then it is prenormalized before the operation is
begun.

The fnms and fnmsub instructions are identical to the fmsub and fms (Floating Multiply-Subtract Single)
instructions with the final result negated, but with the following exceptions:

v Quiet NaNs (QNaNs) propagate with no effect on their ″sign″ bit.

v QNaNs that are generated as the result of a disabled Invalid Operation Exception have a ″sign″ bit of
zero.

v Signaling NaNs (SNaNs) that are converted to QNaNs as the result of a disabled Invalid Operation
Exception have no effect on their ″sign″ bit.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

216 Assembler Language Reference

The fnmsub, fnmsubs, and fnms instructions each have two syntax forms. Each syntax form has a
different effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit
(Rc)

Condition Register Field
1

fnmsub C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmsub. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnmsubs C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnmsubs. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

fnms C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 0 None

fnms. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN,VXISI,VXIMZ 1 FX,FEX,VX,OX

All syntax forms of the fnmsub, fnmsubs, and fnms instructions always affect the Floating-Point Status
and Control Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Floating-Point Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation
Exception (VX), and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Note: Rounding occurs before the result of the addition is negated. Depending on RN, an inexact
value may result.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies first source floating-point register for operation.
FRB Specifies second source floating-point register for operation.
FRC Specifies third source floating-point register for operation.

Examples
1. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from

the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register
and Condition Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0.
fnmsub 6,4,5,7
FPR 6 now contains 0x4070 D800 0000 0935.
FPSCR now contains 0x8202 4000.

2. The following code multiplies the contents of FPR 4 and FPR 5, subtracts the contents of FPR 7 from
the result, stores the negated result in FPR 6, and sets the Floating-Point Status and Control Register
and Condition Register Field 1 to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPR 7 contains 0x3DE2 6AB4 B33c 110A.
Assume FPSCR = 0 and CR = 0.
fnmsub. 6,4,5,7
FPR 6 now contains 0x4070 D800 0000 0935.
FPSCR now contains 0x8202 4000.
CR now contains 0x0800 0000.

Chapter 8. Instruction Set 217

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fres (Floating Reciprocal Estimate Single) Instruction

Purpose
Calculates a single-precision estimate of the reciprocal of a floating-point operand.

Note: The fres instruction is defined only in the PowerPC architecture and is an optional instruction.
It is supported on the PowerPC 603 RISC Microprocessor, and PowerPC 604 RISC Microprocessor,
but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

Bits Value

0-5 59

6-10 FRT

11-15 ///

16-20 FRB

21-25 ///

26-30 24

31 Rc

PowerPC
fres FRT, FRB
fres. FRT, FRB

Description
The fres instruction calculates a single-precision estimate of the reciprocal of the 64-bit, double-precision
floating-point operand in floating-point register (FPR) FRB and places the result in FPR FRT.

The estimate placed into register FRT is correct to a precision of one part in 256 of the reciprocal of FRB.
The value placed into FRT may vary between implementations, and between different executions on the
same implementation.

The following table summarizes special conditions:

Special Conditions

Operand Result Exception

Negative Infinity Negative 0 None

Negative 0 Negative Infinity1 ZX

Positive 0 Positive Infinity1 ZX

Positive Infinity Positive 0 None

SNaN QNaN2 VXSNAN

QNaN QNaN None

218 Assembler Language Reference

1No result if FPSCRZE = 1.

2No result if FPSCRVE = 1.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation Exceptions when
FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The fres instruction has two syntax forms. Both syntax forms always affect the FPSCR register. Each
syntax form has a different effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fres C,FL,FG,FE,FU,FR,FI,FX,OX, UX,ZX,VXSNAN 0 None

fres. C,FL,FG,FE,FU,FR,FI,FX,OX, UX,ZX,VXSNAN 1 FX,FEX,VX,OX

The fres. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point Exception
(FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The fres syntax form sets
the Record (Rc) bit to 0 and does not affect Condition Register Field 1 (CR1).

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

frsp (Floating Round to Single Precision) Instruction

Purpose
Rounds a 64-bit, double precision floating-point operand to single precision and places the result in a
floating-point register.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-30 12

31 Rc

frsp FRT, FRB
frsp. FRT, FRB

Chapter 8. Instruction Set 219

Description
The frsp instruction rounds the 64-bit, double-precision floating-point operand in floating-point register
(FPR) FRB to single precision, using the rounding mode specified by the Floating Rounding Control field of
the Floating-Point Status and Control Register, and places the result in the target FPR FRT.

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation (SNaN), when Floating-Point Status and Control
Register Floating-Point Invalid Operation Exception Enable bit is 1.

The frsp instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

frsp C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 0 None

frsp. C,FL,FG,FE,FU,FR,FI,OX,UX, XX,VXSNAN 1 FX,FEX,VX,OX

The two syntax forms of the frsp instruction always affect the Floating-Point Status and Control Register. If
the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Notes:

1. The frsp instruction uses the target register of a previous floating-point arithmetic operation as its
source register (FRB). The frsp instruction is said to be dependent on the preceding floating-point
arithmetic operation when it uses this register for source.

2. Less than two nondependent floating-point arithmetic operations occur between the frsp
instruction and the operation on which it is dependent.

3. The magnitude of the double-precision result of the arithmetic operation is less than 2**128
before rounding.

4. The magnitude of the double-precision result after rounding is exactly 2**128.

Error Result
If the error occurs, the magnitude of the result placed in the target register FRT is 2**128:
X'47F0000000000000' or X'C7F0000000000000'

This is not a valid single-precision value. The settings of the Floating-Point Status and Control Register
and the Condition Register will be the same as if the result does not overflow.

Avoiding Errors
If the above error will cause significant problems in an application, either of the following two methods can
be used to avoid the error.

1. Place two nondependent floating-point operations between a floating-point arithmetic operation and the
dependent frsp instruction. The target registers for these nondependent floating-point operations
should not be the same register that the frsp instruction uses as source register FRB.

2. Insert two frsp operations when the frsp instruction may be dependent on an arithmetic operation that
precedes it by less than three floating-point instructions.

Either solution will degrade performance by an amount dependent on the particular application.

220 Assembler Language Reference

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and

sets the Floating-Point Status and Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPSCR = 0.
frsp 6,4
FPR 6 now contains 0xC053 4000 0000 0000.
FPSCR now contains 0x0000 8000.

2. The following code rounds the contents of FPR 4 to single precision, places the result in a FPR 6, and
sets the Floating-Point Status and Control Register and Condition Register Field 1 to reflect the result
of the operation:
Assume CR contains 0x0000 0000.
Assume FPR 4 contains 0xFFFF FFFF FFFF FFFF.
Assume FPSCR = 0.
frsp. 6,4
FPR 6 now contains 0xFFFF FFFF E000 0000.
FPSCR now contains 0x0001 1000.
CR now contains 0x0000 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Floating-Point Arithmetic Instructions .

frsqrte (Floating Reciprocal Square Root Estimate) Instruction

Purpose
Calculates a double-precision estimated value of the reciprocal of the square root of a floating-point
operand.

Note: The frsqrte instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC
Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 FRB

21-25 ///

26-30 26

31 Rc

Chapter 8. Instruction Set 221

PowerPC
frsqrte FRT, FRB
frsqrte. FRT, FRB

Description
The frsqrte instruction computes a double-precision estimate of the reciprocal of the square root of the
64-bit, double-precision floating-point operand in floating-point register (FPR) FRB and places the result in
FPR FRT.

The estimate placed into register FRT is correct to a precision of one part in 32 of the reciprocal of the
square root of FRB. The value placed in FRT may vary between implementations and between different
executions on the same implementation.

The following table summarizes special conditions:

Special Conditions

Operand Result Exception

Negative Infinity QNaN1 VXSQRT

Less Than 0 QNaN1 VXSQRT

Negative 0 Negative Infinity2 ZX

Positive 0 Positive Infinity2 ZX

Positive Infinity Positive 0 None

SNaN QNaN1 VXSNAN

QNaN QNaN None

1No result if FPSCRVE = 1.

2No result if FPSCRZE = 1.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation Exceptions when
FPSCRVE = 1 and Zero Divide Exceptions when FPSCRZE = 1.

The frsqrte instruction has two syntax forms. Both syntax forms always affect the FPSCR. Each syntax
form has a different effect on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

frsqrte C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT 0 None

frsqrte. C,FL,FG,FE,FU,FR,FI,FX,ZX, VXSNAN,VXSQRT 1 FX,FEX,VX,OX

The frstrte. syntax form sets the Record (Rc) bit to 1; and the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1 (CR1). The frstrte syntax
form sets the Record (Rc) bit to 0; and the instruction does not affect Condition Register Field 1 (CR1).

Parameters

FRT Specifies target floating-point register for operation.
FRB Specifies source floating-point register for operation.

222 Assembler Language Reference

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

fsel (Floating-Point Select) Instruction

Purpose
Puts either of two floating-point operands into the target register based on the results of comparing
another floating-point operand with zero.

Note: The fsel instruction is defined only in the PowerPC architecture and is an optional instruction.
It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC
Microprocessor, but not supported on the PowerPC 601 RISC Microprocessor.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 FRC

26-30 23

31 Rc

PowerPC
fsel FRT, FRA, FRC, FRB
fsel. FRT, FRA, FRC, FRB

Description
The double-precision floating-point operand in floating-point register (FPR) FRA is compared with the value
zero. If the value in FRA is greater than or equal to zero, floating point register FRT is set to the contents
of floating-point register FRC. If the value in FRA is less than zero or is a NaN, floating point register FRT
is set to the contents of floating-point register FRB.The comparison ignores the sign of zero; both +0 and
-0 are equal to zero.

The fesl instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form FPSCR bits Record Bit (Rc) Condition Register Field 1

fsel None 0 None

fsel. None 1 FX, FEX, VX, OX

The two syntax forms of the fsel instruction never affect the Floating-Point Status and Control Register
fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception

Chapter 8. Instruction Set 223

(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies floating-point register with value to be compared with zero.
FRB Specifies source floating-point register containing the value to be used if FRA is less than zero or is a NaN.
FRC Specifies source floating-point register containing the value to be used if FRA is greater than or equal to zero.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

fsqrt (Floating Square Root, Double-Precision) Instruction

Purpose
Calculate the square root of the contents of a floating- point register, placing the result in a floating-point
register.

Syntax

Bits Value

0-5 63

6-10 D

11-15 00000

16-20 B

21-25 00000

26-30 22

31 Rc

PowerPC
fsqrt FRT, FRB (Rc=0)
fsqrt. FRT, FRB (Rc=1)

Description
The square root of the operand in floating-point register (FPR) FRB is placed into register FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR
and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

Operand Result Exception
- infinity QNaN* VXSQRT
< 0 QNaN* VXSQRT
- 0 - 0 None

224 Assembler Language Reference

Operand Result Exception
+ infinity + infinity None
SNaN QNaN* VXSNAN
QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

The fsqrt instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsqrt FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 0 None

fsqrt. FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,OX

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation
This instruction is optionally defined for PowerPC implementations. Using it on an implementation that
does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all
machines.

fsqrts (Floating Square Root Single) Instruction

Purpose
Calculate the single-precision square root of the contents of a floating- point register, placing the result in a
floating-point register.

Syntax

Bits Value

0-5 59

6-10 D

11-15 00000

16-20 B

21-25 00000

26-30 22

31 Rc

PowerPC
fsqrts FRT, FRB (Rc=0)

Chapter 8. Instruction Set 225

PowerPC
fsqrts. FRT, FRB (Rc=1)

Description
The square root of the floating-point operand in floating-point register (FPR) FRB is placed into register
FPR FRT.

If the most-significant bit of the resultant significand is not a one the result is normalized. The result is
rounded to the target precision under control of the floating-point rounding control field RN of the FPSCR
and placed into register FPR FRT.

Operation with various special values of the operand is summarized below.

Operand Result Exception
- infinity QNaN* VXSQRT
< 0 QNaN* VXSQRT
- 0 - 0 None
+ infinity + infinity None
SNaN QNaN* VXSNAN
QNaN QNaN None

Notes: * No result if FPSCR[VE] = 1

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation exceptions when
FPSCR[VE] = 1.

The fsqrts instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsqrts FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 0 None

fsqrts. FPRF,FR,FI,FX,XX,VXSNAN,VXSQRT 1 FX,FEX,VX,OX

Parameters

FRT Specifies the target floating-point register for the operation.
FRB Specifies the source floating-point register for the operation.

Implementation
This instruction is optionally defined for PowerPC implementations. Using it on an implementation that
does not support this instruction will cause the system illegal instruction error handler to be invoked.

This instruction is an optional instruction of the PowerPC architecture and may not be implemented in all
machines.

fsub or fs (Floating Subtract) Instruction

Purpose
Subtracts one floating-point operand from another and places the result in a floating-point register.

226 Assembler Language Reference

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 20

31 Rc

PowerPC
fsub FRT, FRA, FRB
fsub. FRT, FRA, FRB

PowerPC
fs FRT, FRA, FRB
fs. FRT, FRA, FRB

Bits Value

0-5 59

6-10 FRT

11-15 FRA

16-20 FRB

21-25 ///

26-30 20

31 Rc

PowerPC
fsubs FRT, FRA, FRB
fsubs. FRT, FRA, FRB

Description
The fsub and fs instructions subtract the 64-bit, double-precision floating-point operand in floating-point
register (FPR) FRB from the 64-bit, double-precision floating-point operand in FPR FRA.

The fsubs instruction subtracts the 32-bit single-precision floating-point operand in FPR FRB from the
32-bit single-precision floating-point operand in FPR FRA.

The result is rounded under control of the Floating-Point Rounding Control Field RN of the Floating-Point
Status and Control Register and is placed in the target FPR FRT.

The execution of the fsub instruction is identical to that of fadd, except that the contents of FPR FRB
participate in the operation with bit 0 inverted.

The execution of the fs instruction is identical to that of fa, except that the contents of FPR FRB
participate in the operation with bit 0 inverted.

Chapter 8. Instruction Set 227

The Floating-Point Result Flags Field of the Floating-Point Status and Control Register is set to the class
and sign of the result, except for Invalid Operation Exceptions, when the Floating-Point Invalid Operation
Exception Enable bit is 1.

The fsub, fsubs, and fs instructions each have two syntax forms. Each syntax form has a different effect
on Condition Register Field 1.

Syntax Form Floating-Point Status and Control Register Record Bit (Rc) Condition Register Field 1

fsub C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fsub. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fsubs C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fsubs. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

fs C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

0 None

fs. C,FL,FG,FE,FU,FR,FI,OX,UX,
XX,VXSNAN,VXISI

1 FX,FEX,VX,OX

All syntax forms of the fsub, fsubs, and fs instructions always affect the Floating-Point Status and Control
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point
Exception (FX), Floating-Point Enabled Exception (FEX), Floating-Point Invalid Operation Exception (VX),
and Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register for operation.
FRA Specifies source floating-point register for operation.
FRB Specifies source floating-point register for operation.

Examples
1. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in

FPR 6, and sets the Floating-Point Status and Control Register to reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0.
fsub 6,4,5
FPR 6 now contains 0xC054 2000 0000 0000.
FPSCR now contains 0x0000 8000.

2. The following code subtracts the contents of FPR 5 from the contents of FPR 4, places the result in
FPR 6, and sets the Floating-Point Status and Control Register and Condition Register Field 1 to
reflect the result of the operation:
Assume FPR 4 contains 0xC053 4000 0000 0000.
Assume FPR 5 contains 0x400C 0000 0000 0000.
Assume FPSCR = 0 and CR = 0.
fsub. 6,5,4
FPR 6 now contains 0x4054 2000 0000 0000.
FPSCR now contains 0x0000 4000.
CR now contains 0x0000 0000.

228 Assembler Language Reference

Related Information
Floating-Point Processor .

Floating-Point Arithmetic Instructions .

Interpreting the Contents of a Floating-Point Register .

icbi (Instruction Cache Block Invalidate) Instruction

Purpose
Invalidates a block containing the byte addressed in the instruction cache, causing subsequent references
to retrieve the block from main memory.

Note: The icbi instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 RA

16-20 RB

21-30 982

31 /

PowerPC
icbi RA, RB

Description
The icbi instruction invalidates a block containing the byte addressed in the instruction cache. If RA is not
0, the icbi instruction calculates an effective address (EA) by adding the contents of general-purpose
register (GPR) RA to the contents of GPR RB.

Consider the following when using the icbi instruction:

v If the Data Relocate (DR) bit of the Machine State Register (MSR) is 0, the effective address is treated
as a real address.

v If the MSR DR bit is 1, the effective address is treated as a virtual address. The MSR Relocate (IR) bit
is ignored in this case.

v If a block containing the byte addressed by the EA is in the instruction cache, the block is made
unusable so the next reference to the block is taken from main memory.

The icbi instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point
Exception Register.

Parameters

RA Specifies source general-purpose register for the EA calculation.
RB Specifies source general-purpose register for the EA calculation.

Chapter 8. Instruction Set 229

Examples
The following code ensures that modified instructions are available for execution:
Assume GPR 3 contains a modified instruction.
Assume GPR 4 contains the address of the memory location
where the modified instruction will be stored.
stw 3,0(4) # Store the modified instruction.
dcbf 0,4 # Copy the modified instruction to

main memory.
sync # Ensure update is in main memory.
icbi 0,4 # Invalidate block with old instruction.
isync # Discard prefetched instructions.
b newcode # Go execute the new code.

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst
(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Block Set to Zero) instruction,
dclst (Data Cache Line Store) instruction, sync (Synchronize) or dcs (Data Cache Synchronize)
instruction.

Processing and Storage

isync or ics (Instruction Synchronize) Instruction

Purpose
Refetches any instructions that might have been fetched prior to this instruction.

Syntax

Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 150

31 /

PowerPC

isync

POWER family

ics

Description
The isync and ics instructions cause the processor to refetch any instructions that might have been
fetched prior to the isync or ics instruction.

230 Assembler Language Reference

The PowerPC instruction isync causes the processor to wait for all previous instructions to complete.
Then any instructions already fetched are discarded and instruction processing continues in the
environment established by the previous instructions.

The POWER family instruction ics causes the processor to wait for any previous dcs instructions to
complete. Then any instructions already fetched are discarded and instruction processing continues under
the conditions established by the content of the Machine State Register.

The isync and ics instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Examples
The following code refetches instructions before continuing:
Assume GPR 5 holds name.
Assume GPR 3 holds 0x0.
name: dcbf 3,5
isync

Related Information
The clcs (Cache Line Compute Size) instruction, clf (Cache Line Flush) instruction, cli (Cache Line
Invalidate) instruction, dcbf (Data Cache Block Flush) instruction, dcbi (Data Cache Block Invalidate)
instruction, dcbst (Data Cache Block Store) instruction, dcbt (Data Cache Block Touch) instruction, dcbtst
(Data Cache Block Touch for Store) instruction, dcbz or dclz (Data Cache Line Set to Zero) instruction,
dclst (Data Cache Line Store) instruction, icbi (Instruction Cache Block Invalidate) instruction, sync
(Synchronize) or dcs (Data Cache Synchronize) instruction.

Processing and Storage

Functional Differences for POWER family and PowerPC Instructions .

lbz (Load Byte and Zero) Instruction

Purpose
Loads a byte of data from a specified location in memory into a general-purpose register and sets the
remaining 24 bits to 0.

Syntax

Bits Value

0-5 34

6-10 RT

11-15 RA

16-31 D

lbz RT, D(RA)

Description
The lbz instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

Chapter 8. Instruction Set 231

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the EA is D.

The lbz instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads a byte of data from a specified location in memory into GPR 6 and sets the
remaining 24 bits to 0:
.csect data[rw]
storage: .byte 'a
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lbz 6,storage(5)
GPR 6 now contains 0x0000 0061.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lbzu (Load Byte and Zero with Update) Instruction

Purpose
Loads a byte of data from a specified location in memory into a general-purpose register, sets the
remaining 24 bits to 0, and possibly places the address in a second general-purpose register.

Syntax

Bits Value

0-5 35

6-10 RT

11-15 RA

16-31 D

lbzu RT, D(RA)

Description
The lbzu instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s complement
integer sign extended to 32 bits. If RA is 0, then the EA is D.

232 Assembler Language Reference

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The lbzu instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code loads a byte of data from a specified location in memory into GPR 6, sets the
remaining 24 bits to 0, and places the address in GPR 5:
.csect data[rw]
storage: .byte 0x61
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lbzu 6,storage(5)
GPR 6 now contains 0x0000 0061.
GPR 5 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lbzux (Load Byte and Zero with Update Indexed) Instruction

Purpose
Loads a byte of data from a specified location in memory into a general-purpose register, setting the
remaining 24 bits to 0, and places the address in the a second general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 119

31 /

lbzux RT, RA, RB

Description
The lbzux instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of
the target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

Chapter 8. Instruction Set 233

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is the
contents of RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is stored in GPR RA.

The lbzux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads the value located at storage into GPR 6 and loads the address of storage into
GPR 5:
storage: .byte 0x40

.

.
Assume GPR 5 contains 0x0000 0000.
Assume GPR 4 is the storage address.
lbzux 6,5,4
GPR 6 now contains 0x0000 0040.
GPR 5 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lbzx (Load Byte and Zero Indexed) Instruction

Purpose
Loads a byte of data from a specified location in memory into a general-purpose register and sets the
remaining 24 bits to 0.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 87

31 /

lbzx RT, RA, RB

234 Assembler Language Reference

Description
The lbzx instruction loads a byte in storage addressed by the effective address (EA) into bits 24-31 of the
target general-purpose register (GPR) RT and sets bits 0-23 of GPR RT to 0.

If RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If RA is 0, then the EA is D.

The lbzx instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads the value located at storage into GPR 6:
storage: .byte 0x61

.

.
Assume GPR 5 contains 0x0000 0000.
Assume GPR 4 is the storage address.
lbzx 6,5,4
GPR 6 now contains 0x0000 0061.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

ld (Load Double Word) Instruction

Purpose
Load a double-word of data into the specified general purpose register.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 00

PowerPC64
ld RT, D(RA)

Chapter 8. Instruction Set 235

Description
The ld instruction loads a double-word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads a double-word from memory into GPR 4:
.extern mydata[RW]
.csect foodata[rw]
.local foodata[rw]
storage: .llong mydata # address of mydata

.csect text[PR]
Assume GPR 5 contains address of csect foodata[RW].

ld 4,storage(5) # GPR 5 now contains the address of mydata.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

ldarx (Store Double Word Reserve Indexed) Instruction

Purpose
This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 84

31 0

PowerPC64
ldarx rD, rA, rB

236 Assembler Language Reference

Description
This instruction creates a reservation for use by a Store Double Word Conditional Indexed (stdcx.)
instruction. An address computed from the EA is associated with the reservation, and replaces any
address previously associated with the reservation. EA must be a multiple of eight. If it is not, either the
system alignment exception handler is invoked or the results are boundedly undefined.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Parameters

rD Specifies source general-purpose register of stored data.
rA Specifies source general-purpose register for EA calculation.
rB Specifies source general-purpose register for EA calculation.

Examples

Related Information

ldu (Store Double Word with Update) Instruction

Purpose
Load a double-word of data into the specified general purpose register, updating the address base.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 01

PowerPC64
ldu RT, D(RA)

Description
The ldu instruction loads a double-word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits.

If RA = 0 or RA = RT, the instruction form is invalid.

Chapter 8. Instruction Set 237

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads the first of 4 double-words from memory into GPR 4, incrementing GPR 5 to
point to the next double-word in memory:
.csect foodata[rw]
storage: .llong 5,6,7,12 # Successive double-words.

.csect text[PR]
Assume GPR 5 contains address of csect foodata[RW].

ldu 4,storage(5) # GPR 4 now contains the first double-word of
foodata; GRP 5 points to the second double-word.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions

ldux (Store Double Word with Update Indexed) Instruction

Purpose
Load a double-word of data from a specified memory location into a general purpose register. Update the
address base.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 53

31 0

PowerPC
ldux RT, RA, RB

Description
The effective address (EA) is calculated from the sum of general purpose register (GPR) RA and RB. A
double-word of data is read from the memory location referenced by the EA and placed into GPR RT;
GRP RA is updated with the EA.

238 Assembler Language Reference

If rA = 0 or rA = rD, the instruction form is invalid.

Parameters

RT Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

ldx (Store Double Word Indexed) Instruction

Purpose
Load a double-word from a specified memory location into a general purpose register.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 21

31 0

PowerPC
ldx RT, RA, RB

Description
The ldx instruction loads a double-word from the specified memory location referenced by the effective
address (EA) into the general-purpose register (GPR) RT.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the
contents of RB.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Chapter 8. Instruction Set 239

lfd (Load Floating-Point Double) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register.

Syntax

Bits Value

0-5 50

6-10 FRT

11-15 RA

16-31 D

lfd FRT, D(RA)

Description
The lfd instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a
16-bit, signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lfd instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies target general-purpose register where result of the operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for the EA calculation.
RA Specifies source general-purpose register for the EA calculation.

Examples
The following code loads a doubleword from memory into FPR 6:
.csect data[rw]
storage: .double 0x1
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lfd 6,storage(5)
FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

240 Assembler Language Reference

lfdu (Load Floating-Point Double with Update) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register and possibly
places the specified address in a general-purpose register.

Syntax

Bits Value

0-5 51

6-10 FRT

11-15 RA

16-31 D

lfdu FRT, D(RA)

Description
The lfdu instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the effective address (EA) is D.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the effective address is stored in GPR RA.

The lfdu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:
.csect data[rw]
storage: .double 0x1
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lfdu 6,storage(5)
FPR 6 now contains 0x3FF0 0000 0000 0000.
GPR 5 now contains the storage address.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

Chapter 8. Instruction Set 241

lfdux (Load Floating-Point Double with Update Indexed) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register and possibly
places the specified address in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 631

31 /

lfdux FRT, RA, RB

Description
The lfdux instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA
is 0, then the EA is the contents of RB.

If RA does not equal 0, and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the EA is stored in GPR RA.

The lfdux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register.

Parameters

FRT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a doubleword from memory into FPR 6 and stores the address in GPR 5:
.csect data[rw]
storage: .double 0x1
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage relative
to .csect data[rw].
.csect text[pr]
lfdux 6,5,4
FPR 6 now contains 0x3FF0 0000 0000 0000.
GPR 5 now contains the storage address.

242 Assembler Language Reference

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfdx (Load Floating-Point Double-Indexed) Instruction

Purpose
Loads a doubleword of data from a specified location in memory into a floating-point register.

Syntax

Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 599

31 /

lfdx FRT, RA, RB

Description
The lfdx instruction loads a doubleword in storage from a specified location in memory addressed by the
effective address (EA) into the target floating-point register (FPR) FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and GPR RB. If RA
is 0, then the EA is the contents of GPR RB.

The lfdx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a doubleword from memory into FPR 6:
storage: .double 0x1

.

.
Assume GPR 4 contains the storage address.
lfdx 6,0,4
FPR 6 now contains 0x3FF0 0000 0000 0000.

Chapter 8. Instruction Set 243

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfq (Load Floating-Point Quad) Instruction

Purpose
Loads two double-precision values into floating-point registers.

Note: The lfq instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 56

6-10 FRT

11-15 RA

16-29 DS

30-31 00

POWER2
lfq FRT, DS(RA)

Description
The lfq instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,
the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The lfq instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for the EA calculation.

Examples
The following code copies two double-precision floating-point values from one place in memory to a
second place in memory:
Assume GPR 3 contains the address of the first source
floating-point value.
Assume GPR 4 contains the address of the target location.

244 Assembler Language Reference

lfq 7,0(3) # Load first two values into FPRs 7 and
8.

stfq 7,0(4) # Store the two doublewords at the new
location.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqu (Load Floating-Point Quad with Update) Instruction

Purpose
Loads two double-precision values into floating-point registers and updates the address base.

Note: The lfqu instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 57

6-10 FRT

11-15 RA

16-29 DS

30-31 00

POWER2
lfqu FRT, DS(RA)

Description
The lfqu instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register GPR RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The doubleword at the EA is loaded into FPR FRT. If FRT is 31,
the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

If GPR RA is not 0, the EA is placed into GPR RA.

The lfqu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point register.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for EA calculation and the target register for the EA update.

Chapter 8. Instruction Set 245

Examples
The following code calculates the sum of six double-precision floating-point values that are located in
consecutive doublewords in memory:
Assume GPR 3 contains the address of the first
floating-point value.
Assume GPR 4 contains the address of the target location.
lfq 7,0(3) # Load first two values into FPRs 7 and

8.
lfqu 9,16(3) # Load next two values into FPRs 9 and 10

and update base address in GPR 3.
fadd 6,7,8 # Add first two values.
lfq 7,16(3) # Load next two values into FPRs 7 and 8.
fadd 6,6,9 # Add third value.
fadd 6,6,10 # Add fourth value.
fadd 6,6,7 # Add fifth value.
fadd 6,6,8 # Add sixth value.
stfqx 7,0,4 # Store the two doublewords at the new

location.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqux (Load Floating-Point Quad with Update Indexed) Instruction

Purpose
Loads two double-precision values into floating-point registers and updates the address base.

Note: The lfqux instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 823

31 Rc

POWER2
lfqux FRT, RA, RB

Description
The lfqux instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If
FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

246 Assembler Language Reference

If GPR RA is not 0, the EA is placed into GPR RA.

The lfqux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.
RA Specifies the first source general-purpose register for the EA calculation and the target register for the EA

update.
RB Specifies the second source general-purpose register for the EA calculation.

Examples
The following code calculates the sum of three double-precision, floating-point, two-dimensional
coordinates:
Assume the two-dimensional coordinates are contained
in a linked list with elements of the form:
list_element:
.double # Floating-point value of X.
.double # Floating-point value of Y.
.next_elem # Offset to next element;
from X(n) to X(n+1).
#
Assume GPR 3 contains the address of the first list element.
Assume GPR 4 contains the address where the resultant sums
will be stored.
lfq 7,0(3) # Get first pair of X_Y values.
lwz 5,16(3) # Get the offset to second element.
lfqux 9,3,5 # Get second pair of X_Y values.
lwz 5,16(3) # Get the offset to third element.
fadd 7,7,9 # Add first two X values.
fadd 8,8,10 # Add first two Y values.
lfqux 9,3,5 # Get third pair of X_Y values.
fadd 7,7,9 # Add third X value to sum.
fadd 8,8,10 # Add third Y value to sum.
stfq 7,0,4 # Store the two doubleword results.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfqx (Load Floating-Point Quad Indexed) Instruction

Purpose
Loads two double-precision values into floating-point registers.

Note: The lfqx instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 31

6-10 FRT

Chapter 8. Instruction Set 247

Bits Value

11-15 RA

16-20 RB

21-30 791

31 Rc

POWER2
lfqx FRT, RA, RB

Description
The lfqx instruction loads the two doublewords from the location in memory specified by the effective
address (EA) into two floating-point registers (FPR).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The doubleword at the EA is loaded into FPR FRT. If
FRT is 31, the doubleword at EA+8 is loaded into FPR 0; otherwise, it is loaded into FRT+1.

The lfqx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies the first of two target floating-point registers.
RA Specifies one source general-purpose register for the EA calculation.
RB Specifies the second source general-purpose register for the EA calculation.

Examples
The following code calculates the sum of two double-precision, floating-point values that are located in
consecutive doublewords in memory:
Assume GPR 3 contains the address of the first floating-point
value.
Assume GPR 4 contains the address of the target location.
lfqx 7,0,3 # Load values into FPRs 7 and 8.
fadd 7,7,8 # Add the two values.
stfdx 7,0,4 # Store the doubleword result.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfs (Load Floating-Point Single) Instruction

Purpose
Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register.

248 Assembler Language Reference

Syntax

Bits Value

0-5 48

6-10 FRT

11-15 RA

16-31 D

lfs FRT, D(RA)

Description
The lfs instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to a floating-point, double-precision word and loads the result into floating-point register
(FPR) FRT.

If RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s complement
integer sign-extended to 32 bits. If RA is 0, then the EA is D.

The lfs instruction has one syntax form and does not affect the Floating-Point Status and Control Register
or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads the single-precision contents of storage into FPR 6:
.csect data[rw]
storage: .float 0x1
Assume GPR 5 contains the address csect data[rw].
.csect text[pr]
lfs 6,storage(5)
FPR 6 now contains 0x3FF0 0000 0000 0000.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfsu (Load Floating-Point Single with Update) Instruction

Purpose
Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register and possibly places the effective address in a
general-purpose register.

Chapter 8. Instruction Set 249

Syntax

Bits Value

0-5 49

6-10 FRT

11-15 RA

16-31 D

lfsu FRT, D(RA)

Description
The lfsu instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)
FRT.

If RA is not 0, the EA is the sum of the contents of general-purpose register (GPR) RA and D, a 16-bit
signed two’s complement integer sign extended to 32 bits. If RA is 0, then the EA is D.

If RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data Storage
interrupt, then the EA is stored in GPR RA.

The lfsu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRT Specifies target floating-point register where data is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code loads the single-precision contents of storage, which is converted to double precision,
into FPR 6 and stores the effective address in GPR 5:
.csect data[rw]
storage: .float 0x1
.csect text[pr]
Assume GPR 5 contains the storage address.
lfsu 6,0(5)
FPR 6 now contains 0x3FF0 0000 0000 0000.
GPR 5 now contains the storage address.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

250 Assembler Language Reference

lfsux (Load Floating-Point Single with Update Indexed) Instruction

Purpose
Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register and possibly places the effective address in a
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 567

31 /

lfsux FRT, RA, RB

Description
The lfsux instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)
FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause an Alignment interrupt or a Data
Storage interrupt, then the EA is stored in GPR RA.

The lfsux instruction has one syntax form and does not affect the Floating-Point Status Control Register.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads the single-precision contents of storage into FPR 6 and stores the effective
address in GPR 5:
.csect data[rw]
storage: .float 0x1
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 5 contains the displacement of storage
relative to .csect data[rw].
.csect text[pr]
lfsux 6,5,4
FPR 6 now contains 0x3FF0 0000 0000 0000.
GPR 5 now contains the storage address.

Chapter 8. Instruction Set 251

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lfsx (Load Floating-Point Single Indexed) Instruction

Purpose
Loads a floating-point, single-precision number that has been converted to a floating-point,
double-precision number into a floating-point register.

Syntax

Bits Value

0-5 31

6-10 FRT

11-15 RA

16-20 RB

21-30 535

31 /

lfsx FRT, RA, RB

Description
The lfsx instruction converts a floating-point, single-precision word in storage addressed by the effective
address (EA) to floating-point, double-precision word and loads the result into floating-point register (FPR)
FRT.

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If RA is 0, then the EA is the contents of GPR RB.

The lfsx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register.

Parameters

FRT Specifies target floating-point register where data is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads the single-precision contents of storage into FPR 6:
storage: .float 0x1.
Assume GPR 4 contains the address of storage.
lfsx 6,0,4
FPR 6 now contains 0x3FF0 0000 0000 0000.

252 Assembler Language Reference

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

lha (Load Half Algebraic) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register and copies
bit 0 of the halfword into the remaining 16 bits of the general-purpose register.

Syntax

Bits Value

0-5 42

6-10 RT

11-15 RA

16-31 D

lha RT, D(RA)

Description
The lha instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign extended to 32 bits. If GPR RA is 0, then the EA is D.

The lha instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6 and copies bit 0 of the halfword into
bits 0-15 of GPR 6:
.csect data[rw]
storage: .short 0xffff
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lha 6,storage(5)
GPR 6 now contains 0xffff ffff.

Chapter 8. Instruction Set 253

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhau (Load Half Algebraic with Update) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0
of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address
in another general-purpose register.

Syntax

Bits Value

0-5 43

6-10 RT

11-15 RA

16-31 D

lhau RT, D(RA)

Description
The lhau instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhau instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6, copies bit 0 of the halfword into bits
0-15 of GPR 6, and stores the effective address in GPR 5:
.csect data[rw]
storage: .short 0xffff
Assume GPR 5 contains the address of csect data[rw].

254 Assembler Language Reference

.csect text[pr]
lhau 6,storage(5)
GPR 6 now contains 0xffff ffff.
GPR 5 now contains the address of storage.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhaux (Load Half Algebraic with Update Indexed) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register, copies bit 0
of the halfword into the remaining 16 bits of the general-purpose register, and possibly places the address
in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 375

31 /

lhaux RT, RA, RB

Description
The lhaux instruction loads a halfword of data from a specified location in memory addressed by the
effective address (EA) into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhaux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies first source general-purpose register for EA calculation and possible address update.
RB Specifies second source general-purpose register for EA calculation.

Chapter 8. Instruction Set 255

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6, copies bit 0 of the halfword into bits
0-15 of GPR 6, and stores the effective address in GPR 5:
.csect data[rw]
storage: .short 0xffff
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage relative
to data[rw].
.csect text[pr]
lhaux 6,5,4
GPR 6 now contains 0xffff ffff.
GPR 5 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhax (Load Half Algebraic Indexed) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register and copies
bit 0 of the halfword into the remaining 16 bits of the general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 343

31 /

lhax RT, RA, RB

Description
The lhax instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and copies bit 0 of
the halfword into bits 0-15 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The lhax instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.

256 Assembler Language Reference

RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6 and copies bit 0 of the halfword into
bits 0-15 of GPR 6:
.csect data[rw]
.short 0x1
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of the halfword
relative to data[rw].
.csect text[pr]
lhax 6,5,4
GPR 6 now contains 0x0000 0001.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhbrx (Load Half Byte-Reverse Indexed) Instruction

Purpose
Loads a byte-reversed halfword of data from a specified location in memory into a general-purpose
register and sets the remaining 16 bits of the general-purpose register to zero.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 790

31 /

lhbrx RT, RA, RB

Description
The lhbrx instruction loads bits 00-07 and bits 08-15 of the halfword in storage addressed by the effective
address (EA) into bits 24-31 and bits 16-23 of general-purpose register (GPR) RT, and sets bits 00-15 of
GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The lhbrx instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Chapter 8. Instruction Set 257

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads bits 00-07 and bits 08-15 of the halfword in storage into bits 24-31 and bits 16-23
of GPR 6, and sets bits 00-15 of GPR 6 to 0:
.csect data[rw]
.short 0x7654
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 5 contains the displacement relative
to data[rw].
.csect text[pr]
lhbrx 6,5,4
GPR 6 now contains 0x0000 5476.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhz (Load Half and Zero) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register and sets the
remaining 16 bits to 0.

Syntax

Bits Value

0-5 40

6-10 RT

11-15 RA

16-31 D

lhz RT, D(RA)

Description
The lhz instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15
of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lhz instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

258 Assembler Language Reference

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6 and sets bits 0-15 of GPR 6 to 0:
.csect data[rw]
storage: .short 0xffff
Assume GPR 4 holds the address of csect data[rw].
.csect text[pr]
lhz 6,storage(4)
GPR 6 now holds 0x0000 ffff.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lhzu (Load Half and Zero with Update) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register, sets the
remaining 16 bits of the general-purpose register to 0, and possibly places the address in another
general-purpose register.

Syntax

Bits Value

0-5 41

6-10 RT

11-15 RA

16-31 D

lhzu RT, D(RA)

Description
The lhzu instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15
of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhzu instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Chapter 8. Instruction Set 259

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6, sets bits 0-15 of GPR 6 to 0, and
stores the effective address in GPR 4:
.csect data[rw]
.short 0xffff
Assume GPR 4 contains the address of csect data[rw].
.csect text[pr]
lhzu 6,0(4)
GPR 6 now contains 0x0000 ffff.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhzux (Load Half and Zero with Update Indexed) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register, sets the
remaining 16 bits of the general-purpose register to 0, and possibly places the address in another
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 331

31 /

lhzux RT, RA, RB

Description
The lhzux instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15
of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

260 Assembler Language Reference

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lhzux instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6, sets bits 0-15 of GPR 6 to 0, and
stores the effective address in GPR 5:
.csect data[rw]
storage: .short 0xffff
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage
relative to data[rw].
.csect text[pr]
lhzux 6,5,4
GPR 6 now contains 0x0000 ffff.
GPR 5 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lhzx (Load Half and Zero Indexed) Instruction

Purpose
Loads a halfword of data from a specified location in memory into a general-purpose register and sets the
remaining 16 bits of the general-purpose register to 0.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 279

31 /

lhzx RT, RA, RB

Chapter 8. Instruction Set 261

Description
The lhzx instruction loads a halfword of data from a specified location in memory, addressed by the
effective address (EA), into bits 16-31 of the target general-purpose register (GPR) RT and sets bits 0-15
of GPR RT to 0.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The lhzx instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a halfword of data into bits 16-31 of GPR 6 and sets bits 0-15 of GPR 6 to 0:
.csect data[rw]
.short 0xffff
.csect text[pr]
Assume GPR 5 contains the address of csect data[rw].
Assume 0xffff is the halfword located at displacement 0.
Assume GPR 4 contains 0x0000 0000.
lhzx 6,5,4
GPR 6 now contains 0x0000 ffff.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lmw or lm (Load Multiple Word) Instruction

Purpose
Loads consecutive words at a specified location into more than one general-purpose register.

Syntax

Bits Value

0-5 46

6-10 RT

11-15 RA

16-31 D

PowerPC
lmw RT, D(RA)

262 Assembler Language Reference

POWER family
lm RT, D(RA)

Description
The lmw and lm instructions load N consecutive words starting at the calculated effective address (EA)
into a number of general-purpose registers (GPR), starting at GPR RT and filling all GPRs through GPR
31. N is equal to 32-RT field, the total number of consecutive words that are placed in consecutive
registers.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D. If GPR RA is 0, then the EA is
D.

Consider the following when using the PowerPC instruction lmw:

v If GPR RA or GPR RB is in the range of registers to be loaded or RT = RA = 0, the results are
boundedly undefined.

v The EA must be a multiple of 4. If it is not, the system alignment error handler may be invoked or the
results may be boundedly undefined.

For the POWER family instruction lm, if GPR RA is not equal to 0 and GPR RA is in the range to be
loaded, then GPR RA is not written to. The data that would have normally been written into RA is
discarded and the operation continues normally.

The lmw and lm instructions have one syntax and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Note: The lmw and lm instructions are interruptible due to a data storage interrupt. When such an
interrupt occurs, the instruction should be restarted from the beginning.

Parameters

RT Specifies starting target general-purpose register for operation.
D Specifies a 16-bit signed two’s complement integer sign extended to 32 bits for EA calculation
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads data into GPR 29 and GPR 31:
.csect data[rw]
.long 0x8971
.long -1
.long 0x7ffe c100
Assume GPR 30 contains the address of csect data[rw].
.csect text[pr]
lmw 29,0(30)
GPR 29 now contains 0x0000 8971.
GPR 30 now contains the address of csect data[rw].
GPR 31 now contains 0x7ffe c100.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

Chapter 8. Instruction Set 263

lscbx (Load String and Compare Byte Indexed) Instruction

Purpose
Loads consecutive bytes in storage into consecutive registers.

Note: The lscbx instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 277

31 Rc

POWER family
lscbx RT, RA, RB
lscbx. RT, RA, RB

Description
The lscbx instruction loads N consecutive bytes addressed by effective address (EA) into general-purpose
register (GPR) RT, starting with the leftmost byte in register RT, through RT + NR - 1, and wrapping
around back through GPR 0, if required, until either a byte match is found with XER16-23 or N bytes have
been loaded. If a byte match is found, then that byte is also loaded.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the address stored in GPR RB. If
RA is 0, then EA is the contents of GPR RB.

Consider the following when using the lscbx instruction:

v XER(16-23) contains the byte to be compared.

v XER(25-31) contains the byte count before the instruction is invoked and the number of bytes loaded
after the instruction has completed.

v If XER(25-31) = 0, GPR RT is not altered.

v N is XER(25-31), which is the number of bytes to load.

v NR is ceiling(N/4), which is the total number of registers required to contain the consecutive bytes.

Bytes are always loaded left to right in the register. In the case when a match was found before N bytes
were loaded, the contents of the rightmost bytes not loaded from that register and the contents of all
succeeding registers up to and including register RT + NR - 1 are undefined. Also, no reference is made
to storage after the matched byte is found. In the case when a match was not found, the contents of the
rightmost bytes not loaded from register RT + NR - 1 are undefined.

If GPR RA is not 0 and GPRs RA and RB are in the range to be loaded, then GPRs RA and RB are not
written to. The data that would have been written into them is discarded, and the operation continues
normally. If the byte in XER(16-23) compares with any of the 4 bytes that would have been loaded into

264 Assembler Language Reference

GPR RA or RB, but are being discarded for restartability, the EQ bit in the Condition Register and the
count returned in XER(25-31) are undefined. The Multiply Quotient (MQ) Register is not affected by this
operation.

The lscbx instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

lscbx None XER(25-31) = # of
bytes loaded

0 None

lscbx. None XER(25-31) = # of
bytes loaded

1 LT,GT,EQ,SO

The two syntax forms of the lscbx instruction place the number of bytes loaded into Fixed-Point Exception
Register (XER) bits 25-31. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less
Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0. If Rc = 1 and XER(25-31) = 0, then Condition Register Field 0 is undefined. If
Rc = 1 and XER(25-31) <> 0, then Condition Register Field 0 is set as follows:

LT, GT, EQ, SO = b’00’||match||XER(SO)

Note: This instruction can be interrupted by a Data Storage interrupt. When such an interrupt occurs,
the instruction is restarted from the beginning.

Parameters

RT Specifies the starting target general-purpose register.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code loads consecutive bytes into GPRs 6, 7, and 8:

.csect data[rw]
string: "Hello, world"
Assume XER16-23 = 'a.
Assume XER25-31 = 9.
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of string relative
to csect data[rw].
.csect text[pr]
lscbx 6,5,4
GPR 6 now contains 0x4865 6c6c.
GPR 7 now contains 0x6f2c 2077.
GPR 8 now contains 0x6fXX XXXX.

2. The following code loads consecutive bytes into GPRs 6, 7, and 8:
Assume XER16-23 = 'e.
Assume XER25-31 = 9.
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of string relative
to csect data[rw].
.csect text[pr]
lscbx. 6,5,4
GPR 6 now contains 0x4865 XXXX.

Chapter 8. Instruction Set 265

GPR 7 now contains 0xXXXX XXXX.
GPR 8 now contains 0xXXXX XXXX.
XER25-31 = 2.
CRF 0 now contains 0x2.

Related Information
Fixed-Point Processor .

Fixed-Point String Instructions .

lswi or lsi (Load String Word Immediate) Instruction

Purpose
Loads consecutive bytes in storage from a specified location in memory into consecutive general-purpose
registers.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 NB

21-30 597

31 /

PowerPC
lswi RT, RA, NB

POWER family
lsi RT, RA, NB

Description
The lswi and lsi instructions load N consecutive bytes in storage addressed by the effective address (EA)
into general-purpose register GPR RT, starting with the leftmost byte, through GPR RT+NR-1, and
wrapping around back through GPR 0, if required.

If GPR RA is not 0, the EA is the contents of GPR RA. If GPR RA is 0, then the EA is 0.

Consider the following when using the lswi and lsi instructions:

v NB is the byte count.

v RT is the starting general-purpose register.

v N is NB, which is the number of bytes to load. If NB is 0, then N is 32.

v NR is ceiling(N/4), which is the number of general-purpose registers to receive data.

For the PowerPC instruction lswi, if GPR RA is in the range of registers to be loaded or RT = RA = 0, the
instruction form is invalid.

Consider the following when using the POWER family instruction lsi:

266 Assembler Language Reference

v If GPR RT + NR - 1 is only partially filled on the left, the rightmost bytes of that general-purpose register
are set to 0.

v If GPR RA is in the range to be loaded, and if GPR RA is not equal to 0, then GPR RA is not written
into by this instruction. The data that would have been written into it is discarded, and the operation
continues normally.

The lswi and lsi instructions have one syntax form which does not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Note: The lswi and lsi instructions can be interrupted by a Data Storage interrupt. When such an
interrupt occurs, the instruction is restarted from the beginning.

Parameters

RT Specifies starting general-purpose register of stored data.
RA Specifies general-purpose register for EA calculation.
NB Specifies byte count.

Examples
The following code loads the bytes contained in a location in memory addressed by GPR 7 into GPR 6:
.csect data[rw]
.string "Hello, World"
Assume GPR 7 contains the address of csect data[rw].
.csect text[pr]
lswi 6,7,0x6
GPR 6 now contains 0x4865 6c6c.

Related Information
Fixed-Point Processor .

Fixed-Point String Instructions .

lswx or lsx (Load String Word Indexed) Instruction

Purpose
Loads consecutive bytes in storage from a specified location in memory into consecutive general-purpose
registers.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 533

31 /

PowerPC
lswx RT, RA, RB

Chapter 8. Instruction Set 267

POWER family
lsx RT, RA, RB

Description
The lswx and lsx instructions load N consecutive bytes in storage addressed by the effective address
(EA) into general-purpose register (GPR) RT, starting with the leftmost byte, through GPR RT + NR - 1,
and wrapping around back through GPR 0 if required.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the address stored in GPR RB. If
GPR RA is 0, then EA is the contents of GPR RB.

Consider the following when using the lswx and lsx instructions:

v XER(25-31) contain the byte count.

v RT is the starting general-purpose register.

v N is XER(25-31), which is the number of bytes to load.

v NR is ceiling(N/4), which is the number of registers to receive data.

v If XER(25-31) = 0, general-purpose register RT is not altered.

For the PowerPC instruction lswx, if RA or RB is in the range of registers to be loaded or RT = RA = 0,
the results are boundedly undefined.

Consider the following when using the POWER family instruction lsx:

v If GPR RT + NR - 1 is only partially filled on the left, the rightmost bytes of that general-purpose register
are set to 0.

v If GPRs RA and RB are in the range to be loaded, and if GPR RA is not equal to 0, then GPR RA and
RB are not written into by this instruction. The data that would have been written into them is discarded,
and the operation continues normally.

The lswx and lsx instructions have one syntax form which does not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Note: The lswx and lsx instructions can be interrupted by a Data Storage interrupt. When such an
interrupt occurs, the instruction is restarted from the beginning.

Parameters

RT Specifies starting general-purpose register of stored data.
RA Specifies general-purpose register for EA calculation.
RB Specifies general-purpose register for EA calculation.

Examples
The following code loads the bytes contained in a location in memory addressed by GPR 5 into GPR 6:
Assume XER25-31 = 4.
csect data[rw]
storage: .string "Hello, world"
Assume GPR 4 contains the displacement of storage
relative to data[rw].
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lswx 6,5,4
GPR 6 now contains 0x4865 6c6c.

268 Assembler Language Reference

Related Information
Fixed-Point Processor .

Fixed-Point String Instructions .

Functional Differences for POWER family and PowerPC Instructions .

lwa (Load Word Algebraic) Instruction

Purpose
Load a fullword of data from storage into the low-order 32 bits of the specified general purpose register.
Sign extend the data into the high-order 32 bits of the register.

Syntax

Bits Value

0-5 58

6-10 D

11-15 A

16-29 ds

30-31 10

POWER family
lwa RT, D (RA)

Description
The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the
target general purpose register (GRP) RT. The value is then sign-extended to fill the high-order 32 bits of
the register.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the
contents of RB.

Parameters

RT Specifies target general-purpose register where result of the operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

lwarx (Load Word and Reserve Indexed) Instruction

Purpose
Used in conjunction with a subsequent stwcx. instruction to emulate a read-modify-write operation on a
specified memory location.

Chapter 8. Instruction Set 269

Note: The lwarx instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 20

31 /

PowerPC
lwarx RT, RA, RB

Description
The lwarx and stwcx. instructions are primitive, or simple, instructions used to perform a read-modify-write
operation to storage. If the store is performed, the use of the lwarx and stwcx. instructions ensures that
no other processor or mechanism has modified the target memory location between the time the lwarx
instruction is executed and the time the stwcx. instruction completes.

If general-purpose register (GPR) RA = 0, the effective address (EA) is the content of GPR RB. Otherwise,
the EA is the sum of the content of GPR RA plus the content of GPR RB.

The lwarx instruction loads the word from the location in storage specified by the EA into the target GPR
RT. In addition, a reservation on the memory location is created for use by a subsequent stwcx.
instruction.

The lwarx instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
EA is not a multiple of 4, the results are boundedly undefined.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code performs a ″Fetch and Store″ by atomically loading and replacing a word in

storage:
Assume that GPR 4 contains the new value to be stored.
Assume that GPR 3 contains the address of the word
to be loaded and replaced.
loop: lwarx r5,0,r3 # Load and reserve

stwcx. r4,0,r3 # Store new value if still
reserved

bne- loop # Loop if lost reservation
The new value is now in storage.
The old value is returned to GPR 4.

2. The following code performs a ″Compare and Swap″ by atomically comparing a value in a register with
a word in storage:

270 Assembler Language Reference

Assume that GPR 5 contains the new value to be stored after
a successful match.
Assume that GPR 3 contains the address of the word
to be tested.
Assume that GPR 4 contains the value to be compared against
the value in memory.
loop: lwarx r6,0,r3 # Load and reserve

cmpw r4,r6 # Are the first two operands
equal?

bne- exit # Skip if not equal
stwcx. r5,0,r3 # Store new value if still

reserved
bne- loop # Loop if lost reservation

exit: mr r4,r6 # Return value from storage
The old value is returned to GPR 4.
If a match was made, storage contains the new value.

If the value in the register equals the word in storage, the value from a second register is stored in the
word in storage. If they are unequal, the word from storage is loaded into the first register and the EQ
bit of the Condition Register field 0 is set to indicate the result of the comparison.

Related Information
The stwcx. (Store Word Conditional Indexed) instruction.

Processing and Storage

lwaux (Load Word Algebraic with Update Indexed) Instruction

Purpose
Load a fullword of data from storage into the low-order 32b its of the specified general purpose register.
Sign extend the data into the high-order 32 bits of the register. Update the address base.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 373

31 0

POWER family
lwaux RT, RA, RB

Description
The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the
target general puspose register (GRP). The value is then sign-extended to fill the high-order 32 bits of the
register. The EA is the sum of the contents of GRP RA and GRP RB.

If RA = 0 or RA = RT, the instruction form is invalid.

Chapter 8. Instruction Set 271

Parameters

RT Specifies target general-purpose register where result of the operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

lwax (Load Word Algebraic Indexed) Instruction

Purpose
Load a fullword of data from storage into the low-order 32 bits of the specified general purpose register.
Sign extend the data into the high-order 32 bits of the register.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21-30 341

31 0

POWER family
lwax RT, RA, RB

Description
The fullword in storage located at the effective address (EA) is loaded into the low-order 32 bits of the
target general puspose register (GRP). The value is then sign-extended to fill the high-order 32 bits of the
register.

If GRP RA is not 0, the EA is the sum of the contents of GRP RA and B; otherwise, the EA is equal to the
contents of RB.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

272 Assembler Language Reference

lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction

Purpose
Loads a byte-reversed word of data from a specified location in memory into a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 534

31 /

PowerPC
lwbrx RT, RA, RB

POWER family
lbrx RT, RA, RB

Description
The lwbrx and lbrx instructions load a byte-reversed word in storage from a specified location in memory
addressed by the effective address (EA) into the target general-purpose register (GPR) RT.

Consider the following when using the lwbrx and lbrx instructions:

v Bits 00-07 of the word in storage addressed by EA are placed into bits 24-31 of GPR RT.

v Bits 08-15 of the word in storage addressed by EA are placed into bits 16-23 of GPR RT.

v Bits 16-23 of the word in storage addressed by EA are placed into bits 08-15 of GPR RT.

v Bits 24-31 of the word in storage addressed by EA are placed into bits 00-07 of GPR RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The lwbrx and lbrx instructions have one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a byte-reversed word from memory into GPR 6:
storage: .long 0x0000 ffff
.
.

Chapter 8. Instruction Set 273

Assume GPR 4 contains 0x0000 0000.
Assume GPR 5 contains address of storage.
lwbrx 6,4,5
GPR 6 now contains 0xffff 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lwz or l (Load Word and Zero) Instruction

Purpose
Loads a word of data from a specified location in memory into a general-purpose register.

Syntax

Bits Value

0-5 32

6-10 RT

11-15 RA

16-31 D

PowerPC
lwz RT, D(RA)

POWER family
l RT, D(RA)

Description
The lwz and l instructions load a word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The lwz and l instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code loads a word from memory into GPR 6:

274 Assembler Language Reference

.csect data[rw]
Assume GPR 5 contains address of csect data[rw].
storage: .long 0x4
.csect text[pr]
lwz 6,storage(5)
GPR 6 now contains 0x0000 0004.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

lwzu or lu (Load Word with Zero Update) Instruction

Purpose
Loads a word of data from a specified location in memory into a general-purpose register and possibly
places the effective address in a second general-purpose register.

Syntax

Bits Value

0-5 33

6-10 RT

11-15 RA

16-31 D

PowerPC
lwzu RT, D(RA)

POWER family
lu RT, D(RA)

Description
The lwzu and lu instructions load a word in storage from a specified location in memory addressed by the
effective address (EA) into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal RT and RA does not equal 0, and the storage access does not cause an Alignment
interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lwzu and lu instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Chapter 8. Instruction Set 275

Examples
The following code loads a word from memory into GPR 6 and places the effective address in GPR 4:
.csect data[rw]
storage: .long 0xffdd 75ce
.csect text[pr]
Assume GPR 4 contains address of csect data[rw].
lwzu 6,storage(4)
GPR 6 now contains 0xffdd 75ce.
GPR 4 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lwzux or lux (Load Word and Zero with Update Indexed) Instruction

Purpose
Loads a word of data from a specified location in memory into a general-purpose register and possibly
places the effective address in a second general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 55

31 /

PowerPC
lwzux RT, RA, RB

POWER family
lux RT, RA, RB

Description
The lwzux and lux instructions load a word of data from a specified location in memory, addressed by the
effective address (EA), into the target general-purpose register (GPR) RT.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

If GPR RA does not equal RT and RA does not equal 0, and the storage access does not cause an
Alignment interrupt or a Data Storage interrupt, then the EA is placed into GPR RA.

The lwzux and lux instructions have one syntax form and do not affect the Fixed-Point Exception Register
or Condition Register Field 0.

276 Assembler Language Reference

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a word from memory into GPR 6 and places the effective address in GPR 5:
.csect data[rw]
storage: .long 0xffdd 75ce
Assume GPR 5 contains the address of csect data[rw].
Assume GPR 4 contains the displacement of storage
relative to csect data[rw].
.csect text[pr]
lwzux 6,5,4
GPR 6 now contains 0xffdd 75ce.
GPR 5 now contains the storage address.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

lwzx or lx (Load Word and Zero Indexed) Instruction

Purpose
Loads a word of data from a specified location in memory into a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 23

31 /

PowerPC
lwzx RT, RA, RB

POWER family
lx RT, RA, RB

Description
The lwzx and lx instructions load a word of data from a specified location in memory, addressed by the
effective address (EA), into the target general-purpose register (GPR) RT.

Chapter 8. Instruction Set 277

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The lwzx and lx instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code loads a word from memory into GPR 6:
.csect data[rw]
.long 0xffdd 75ce
Assume GPR 4 contains the displacement relative to
csect data[rw].
Assume GPR 5 contains the address of csect data[rw].
.csect text[pr]
lwzx 6,5,4
GPR 6 now contains 0xffdd 75ce.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

maskg (Mask Generate) Instruction

Purpose
Generates a mask of ones and zeros and loads it into a general-purpose register.

Note: The maskg instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 29

31 Rc

POWER family
maskg RA, RS, RB
maskg. RA, RS, RB

278 Assembler Language Reference

Description
The maskg instruction generates a mask from a starting point defined by bits 27-31 of general-purpose
register (GPR) RS to an end point defined by bits 27-31 of GPR RB and stores the mask in GPR RA.

Consider the following when using the maskg instruction:

v If the starting point bit is less than the end point bit + 1, then the bits between and including the starting
point and the end point are set to ones. All other bits are set to 0.

v If the starting point bit is the same as the end point bit + 1, then all 32 bits are set to ones.

v If the starting point bit is greater than the end point bit + 1, then all of the bits between and including the
end point bit + 1 and the starting point bit - 1 are set to zeros. All other bits are set to ones.

The maskg instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

maskg None None 0 None

maskg. None None 1 LT,GT,EQ,SO

The two syntax forms of the maskg instruction never affect the Fixed-Point Exception Register. If the
syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than
(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for start of mask.
RB Specifies source general-purpose register for end of mask.

Examples
1. The following code generates a mask of 5 ones and stores the result in GPR 6:

Assume GPR 4 contains 0x0000 0014.
Assume GPR 5 contains 0x0000 0010.
maskg 6,5,4
GPR 6 now contains 0x0000 F800.

2. The following code generates a mask of 6 zeros with the remaining bits set to one, stores the result in
GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0010.
Assume GPR 5 contains 0x0000 0017.
Assume CR = 0.
maskg. 6,5,4
GPR 6 now contains 0xFFFF 81FF.
CR now contains 0x8000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 279

maskir (Mask Insert from Register) Instruction

Purpose
Inserts the contents of one general-purpose register into another general-purpose register under control of
a bit mask.

Note: The maskir instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 541

31 Rc

POWER family
maskir RA, RS, RB
maskir. RA, RS, RB

Description
The maskir stores the contents of general-purpose register (GPR) RS in GPR RA under control of the bit
mask in GPR RB.

The value for each bit in the target GPR RA is determined as follows:

v If the corresponding bit in the mask GPR RB is 1, then the bit in the target GPR RA is given the value
of the corresponding bit in the source GPR RS.

v If the corresponding bit in the mask GPR RB is 0, then the bit in the target GPR RA is unchanged.

The maskir instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

maskir None None 0 None

maskir. None None 1 LT, GT, EQ, SO

The two syntax forms of the maskir instruction never affect the Fixed-Point Exception Register. If the
syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than
(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for bit mask.

280 Assembler Language Reference

Examples
1. The following code inserts the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4:
Assume GPR 6 (RA) target contains 0xAAAAAAAA.
Assume GPR 4 (RB) mask contains 0x000F0F00.
Assume GPR 5 (RS) source contains 0x55555555.
maskir 6,5,4
GPR 6 (RA) target now contains 0xAAA5A5AA.

1. The following code inserts the contents of GPR 5 into GPR 6 under control of the bit mask in GPR 4
and sets Condition Register Field 0 to reflect the result of the operation:

Assume GPR 6 (RA) target contains 0xAAAAAAAA.
Assume GPR 4 (RB) mask contains 0x0A050F00.
Assume GPR 5 (RS) source contains 0x55555555.
maskir. 6,5,4
GPR 6 (RA) target now contains 0xA0AFA5AA.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

mcrf (Move Condition Register Field) Instruction

Purpose
Copies the contents of one condition register field into another.

Syntax

Bits Value

0-5 19

6-8 BF

9-10 //

11-13 BFA

14-15 //

16-20 ///

21-30 0

31 /

mcrf BF, BFA

Description
The mcrf instruction copies the contents of the condition register field specified by BFA into the condition
register field specified by BF. All other fields remain unaffected.

The mcrf instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point
Exception Register.

Parameters

BF Specifies target condition register field for operation.

Chapter 8. Instruction Set 281

BFA Specifies source condition register field for operation.

Examples
The following code copies the contents of Condition Register Field 3 into Condition Register Field 2:
Assume Condition Register Field 3 holds b'0110'.
mcrf 2,3
Condition Register Field 2 now holds b'0110'.

Related Information
Branch Processor .

mcrfs (Move to Condition Register from FPSCR) Instruction

Purpose
Copies the bits from one field of the Floating-Point Status and Control Register into the Condition Register.

Syntax

Bits Value

0-5 63

6-8 BF

9-10 //

11-13 BFA

14-15 //

16-20 ///

21-30 64

31 /

mcrfs BF, BFA

Description
The mcrfs instruction copies four bits of the Floating-Point Status and Control Register (FPSCR) specified
by BFA into Condition Register Field BF. All other Condition Register bits are unchanged.

If the field specified by BFA contains reserved or undefined bits, then bits of zero value are supplied for
the copy.

The mcrfs instruction has one syntax form and can set the bits of the Floating-Point Status and Control
Register.

BFA FPSCR bits set
0 FX,OX
1 UX, ZX, XX, VXSNAN
2 VXISI, VXIDI, VXZDZ, VXIMZ
3 VXVC

282 Assembler Language Reference

Parameters

BF Specifies target condition register field where result of operation is stored.
BFA Specifies one of the FPSCR fields (0-7).

Examples
The following code copies bits from Floating-Point Status and Control Register Field 4 into Condition
Register Field 3:
Assume FPSCR 4 contains b'0111'.
mcrfs 3,4
Condition Register Field 3 contains b'0111'.

Related Information
Branch Processor .

Interpreting the Contents of a Floating-Point Register .

mcrxr (Move to Condition Register from XER) Instruction

Purpose
Copies the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the Fixed-Point Exception
Register into a specified field of the Condition Register.

Syntax

Bits Value

0-5 31

6-8 BF

9-10 //

11-15 ///

16-20 ///

21-30 512

31 /

mcrxr BF

Description
The mcrxr copies the contents of Fixed-Point Exception Register Field 0 bits 0-3 into Condition Register
Field BF and resets Fixed-Point Exception Register Field 0 to 0.

The mcrxr instruction has one syntax form and resets Fixed-Point Exception Register bits 0-3 to 0.

Parameters

BF Specifies target condition register field where result of operation is stored.

Chapter 8. Instruction Set 283

Examples
The following code copies the Summary Overflow bit, Overflow bit, Carry bit, and bit 3 from the
Fixed-Point Exception Register into field 4 of the Condition Register.
Assume bits 0-3 of the Fixed-Point Exception
Register are set to b'1110'.
mcrxr 4
Condition Register Field 4 now holds b'1110'.

Related Information
Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mfcr (Move from Condition Register) Instruction

Purpose
Copies the contents of the Condition Register into a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 ///

21-30 19

31 Rc

mfcr RT

Description
The mfcr instruction copies the contents of the Condition Register into target general-purpose register
(GPR) RT.

The mfcr instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.

Examples
The following code copies the Condition Register into GPR 6:
Assume the Condition Register contains 0x4055 F605.
mfcr 6
GPR 6 now contains 0x4055 F605.

284 Assembler Language Reference

Related Information
Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mffs (Move from FPSCR) Instruction

Purpose
Loads the contents of the Floating-Point Status and Control Register into a floating-point register and fills
the upper 32 bits with ones.

Syntax

Bits Value

0-5 63

6-10 FRT

11-15 ///

16-20 ///

21-30 583

31 Rc

mffs FRT
mffs. FRT

Description
The mffs instruction places the contents of the Floating-Point Status and Control Register into bits 32-63
of floating-point register (FPR) FRT. The bits 0-31 of floating-point register FRT are undefined.

The mffs instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form FPSCR bits Record Bit (Rc) Condition Register Field 1

mffs None 0 None

mffs. None 1 FX, FEX, VX, OX

The two syntax forms of the mffs instruction never affect the Floating-Point Status and Control Register
fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception
(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Parameters

FRT Specifies target floating-point register where result of operation is stored.

Examples
The following code loads the contents of the Floating-Point Status and Control Register into FPR 14, and
fills the upper 32 bits of that register with ones:

Chapter 8. Instruction Set 285

Assume FPSCR contains 0x0000 0000.
mffs 14
FPR 14 now contains 0xFFFF FFFF 0000 0000.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

Functional Differences for POWER family and PowerPC Instructions .

mfmsr (Move from Machine State Register) Instruction

Purpose
Copies the contents of the Machine State Register into a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 ///

21-30 83

31 /

mfmsr RT

Description
The mfmsr instruction copies the contents of the Machine State Register into the target general-purpose
register (GPR) RT.

The mfmsr instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.

Examples
The following code copies the contents of the Machine State Register into GPR 4:
mfmsr 4
GPR 4 now holds a copy of the bit
settings of the Machine State Register.

Security
The mfmsr instruction is privileged only in the PowerPC architecture.

286 Assembler Language Reference

Related Information
Branch Processor .

Floating-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

Functional Differences for POWER family and PowerPC Instructions .

mfspr (Move from Special-Purpose Register) Instruction

Purpose
Copies the contents of a special-purpose register into a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-20 spr

21-30 339

31 Rc

mfspr RT, SPR

Note: The special-purpose register is a split field.

See Extended Mnemonics of Moving from or to Special-Purpose Registers for more information.

Description
The mfspr instruction copies the contents of the special-purpose register SPR into target general-purpose
register (GPR) RT.

The special-purpose register identifier SPR can have any of the values specified in the following table. The
order of the two 5-bit halves of the SPR number is reversed.

SPR Values

Decimal spr5:9 spr0:4 Register Name Privileged

1 00000 00001 XER No

8 00000 01000 LR No

9 00000 01001 CTR No

18 00000 10010 DSISR Yes

19 00000 10011 DAR Yes

22 00000 10110 DEC2 Yes

25 00000 11001 SDR1 Yes

26 00000 11010 SRR0 Yes

Chapter 8. Instruction Set 287

27 00000 11011 SRR1 Yes

272 01000 10000 SPRG0 Yes

273 01000 10001 SPRG1 Yes

274 01000 10010 SPRG2 Yes

275 01000 10011 SPRG3 Yes

282 01000 11010 EAR Yes

284 01000 11100 TBL Yes

285 01000 11101 TBU Yes

528 10000 10000 IBAT0U Yes

529 10000 10001 IBAT0L Yes

530 10000 10010 IBAT1U Yes

531 10000 10011 IBAT1L Yes

532 10000 10100 IBAT2U Yes

533 10000 10101 IBAT2L Yes

534 10000 10110 IBAT3U Yes

535 10000 10111 IBAT3L Yes

536 10000 11000 DBAT0U Yes

537 10000 11001 DBAT0L Yes

538 10000 11010 DBAT1U Yes

539 10000 11011 DBAT1L Yes

540 10000 11100 DBAT2U Yes

541 10000 11101 DBAT2L Yes

542 10000 11110 DBAT3U Yes

543 10000 11111 DBAT3L Yes

0 00000 00000 MQ1 No

4 00000 00100 RTCU1 No

5 00000 00101 RTCL1 No

6 00000 00110 DEC2 No

1Supported only in the POWER family architecture.

2In the PowerPC architecture moving from the DEC register is privileged and the SPR value is 22. In the
POWER family architecture moving from the DEC register is not privileged and the SPR value is 6. For
more information, see Fixed-Point Move to or from Special-Purpose Registers Instructions .

If the SPR field contains any value other than those listed in the SPR Values table, the instruction form is
invalid.

The mfspr instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
SPR Specifies source special-purpose register for operation.

288 Assembler Language Reference

Examples
The following code copies the contents of the Fixed-Point Exception Register into GPR 6:
mfspr 6,1
GPR 6 now contains the bit settings of the Fixed
Point Exception Register.

Related Information
Fixed-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mfsr (Move from Segment Register) Instruction

Purpose
Copies the contents of a segment register into a general-purpose register.

Syntax

Bits Value

0-5 31

6-8 RT

11 /

12-14 SR

16-20 ///

21-30 595

31 /

mfsr RT, SR

Description
The mfsr instruction copies the contents of segment register (SR) into target general-purpose register
(GPR) RT.

The mfsr instruction has one syntax form and does not effect the Fixed-Point Exception Register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RT Specifies the target general-purpose register where the result of the operation is stored.
SR Specifies the source segment register for the operation.

Examples
The following code copies the contents of Segment Register 7 into GPR 6:
Assume that the source Segment Register is SR 7.
Assume that GPR 6 is the target register.
mfsr 6,7
GPR 6 now holds a copy of the contents of Segment Register 7.

Chapter 8. Instruction Set 289

Security
The mfsr instruction is privileged only in the PowerPC architecture.

Related Information
The mfsri (Move from Segment Register Indirect) instruction, mtsr (Move to Segment Register)
instruction, mtsrin or mtsri (Move to Segment Register Indirect) instruction.

Processing and Storage

Functional Differences for POWER family and PowerPC Instructions .

mfsri (Move from Segment Register Indirect) Instruction

Purpose
Copies the contents of a calculated segment register into a general-purpose register.

Note: The mfsri instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 627

31 Rc

POWER family
mfsri RS, RA, RB

Description
The mfsri instruction copies the contents of segment register (SR), specified by bits 0-3 of the calculated
contents of the general-purpose register (GPR) RA, into GPR RS. If RA is not 0, the specifying bits in
GPR RA are calculated by adding the original contents of RA to GPR RB and placing the sum in RA. If
RA = RS, the sum is not placed in RA.

The mfsri instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
Record (Rc) bit is set to 1, Condition Register Field 0 is undefined.

Parameters

RS Specifies the target general-purpose register for operation.
RA Specifies the source general-purpose register for SR calculation.
RB Specifies the source general-purpose register for SR calculation.

290 Assembler Language Reference

Examples
The following code copies the contents of the segment register specified by the first 4 bits of the sum of
the contents of GPR 4 and GPR 5 into GPR 6:
Assume that GPR 4 contains 0x9000 3000.
Assume that GPR 5 contains 0x1000 0000.
Assume that GPR 6 is the target register.
mfsri 6,5,4
GPR 6 now contains the contents of Segment Register 10.

Related Information
The mfsrin (Move from Segment Register Indirect) instruction, mtsr (Move to Segment Register)
instruction, mtsrin or mtsri (Move to Segment Register Indirect) instruction.

Processing and Storage

mfsrin (Move from Segment Register Indirect) Instruction

Purpose
Copies the contents of the specified segment register into a general-purpose register.

Note: The mfsrin instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 ///

16-20 RB

21-30 659

31 /

PowerPC
mfsrin RT, RB

Description
The mfsrin instruction copies the contents of segment register (SR), specified by bits 0-3 of the
general-purpose register (GPR) RB, into GPR RT.

The mfsrin instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
Record (Rc) bit is set to 1, the Condition Register Field 0 is undefined.

Parameters

RT Specifies the target general-purpose register for operation.
RB Specifies the source general-purpose register for SR calculation.

Security
The mfsrin instruction is privileged.

Chapter 8. Instruction Set 291

Related Information
The mfsr (Move from Segment Register) instruction, mfsri (Move from Segment Register Indirect)
instruction, mtsr (Move to Segment Register) instruction, mtsrin or mtsri (Move to Segment Register
Indirect) instruction.

Processing and Storage

mtcrf (Move to Condition Register Fields) Instruction

Purpose
Copies the contents of a general-purpose register into the condition register under control of a field mask.

Syntax

Bits Value

0-5 31

6-10 RS

11 /

12-19 FXM

20 /

21-30 144

31 Rc

mtcrf FXM, RS

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description
The mtcrf instruction copies the contents of source general-purpose register (GPR) RS into the condition
register under the control of field mask FXM.

Field mask FXM is defined as follows:

Bit Description
12 CR 00-03 is updated with the contents of GPR RS 00-03.
13 CR 04-07 is updated with the contents of GPR RS 04-07.
14 CR 08-11 is updated with the contents of GPR RS 08-11.
15 CR 12-15 is updated with the contents of GPR RS 12-15.
16 CR 16-19 is updated with the contents of GPR RS 16-19.
17 CR 20-23 is updated with the contents of GPR RS 20-23.
18 CR 24-27 is updated with the contents of GPR RS 24-27.
19 CR 28-31 is updated with the contents of GPR RS 28-31.

The mtcrf instruction has one syntax form and does not affect the Fixed-Point Exception Register.

Parameters

FXM Specifies field mask.
RS Specifies source general-purpose register for operation.

292 Assembler Language Reference

Examples
The following code copies bits 00-03 of GPR 5 into Condition Register Field 0:
Assume GPR 5 contains 0x7542 FFEE.
Use the mask for Condition Register
Field 0 (0x80 = b'1000 0000').
mtcrf 0x80,5
Condition Register Field 0 now contains b'0111'.

Related Information
Fixed-Point Processor .

Branch Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mtfsb0 (Move to FPSCR Bit 0) Instruction

Purpose
Sets a specified Floating-Point Status and Control Register bit to 0.

Syntax

Bits Value

0-5 63

6-10 BT

11-15 ///

16-20 ///

21-30 70

31 Rc

mtfsb0 BT
mtfsb0. BT

Description
The mtfsb0 instruction sets the Floating-Point Status and Control Register bit specified by BT to 0.

The mtfsb0 instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form Fixed-Point Exception Register Record Bit (Rc) Condition Register Field 1

mtfsb0 None 0 None

mtfsb0. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsb0 instruction never affect the Fixed-Point Exception Register. If the
syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point
Overflow Exception (OX) bits in Condition Register Field 1.

Chapter 8. Instruction Set 293

Note: Bits 1-2 cannot be explicitly set or reset.

Parameters

BT Specifies Floating-Point Status and Control Register bit set by operation.

Examples
1. The following code sets the Floating-Point Status and Control Register Floating-Point Overflow

Exception Bit (bit 3) to 0:
mtfsb0 3
Now bit 3 of the Floating-Point Status and Control
Register is 0.

2. The following code sets the Floating-Point Status and Control Register Floating-Point Overflow
Exception Bit (bit 3) to 0 and sets Condition Register Field 1 to reflect the result of the operation:
mtfsb0. 3
Now bit 3 of the Floating-Point Status and Control
Register is 0.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsb1 (Move to FPSCR Bit 1) Instruction

Purpose
Sets a specified Floating-Point Status and Control Register bit to 1.

Syntax

Bits Value

0-5 63

6-10 BT

11-15 ///

16-20 ///

21-30 38

31 Rc

mtfsb1 BT
mtfsb1. BT

Description
The mtfsb1 instruction sets the Floating-Point Status and Control Register (FPSCR) bit specified by BT to
1.

The mtfsb1 instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

294 Assembler Language Reference

mtfsb1 None 0 None

mtfsb1. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsb1 instruction never affect the Fixed-Point Exception Register. If the
syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX),
Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point
Overflow Exception (OX) bits in Condition Register Field 1.

Note: Bits 1-2 cannot be explicitly set or reset.

Parameters

BT Specifies that the FPSCR bit is set to 1 by instruction.

Examples
1. The following code sets the Floating-Point Status and Control Register bit 4 to 1:

mtfsb1 4
Now bit 4 of the Floating-Point Status and Control
Register is set to 1.

2. The following code sets the Floating-Point Status and Control Register Overflow Exception Bit (bit 3) to
1 and sets Condition Register Field 1 to reflect the result of the operation:
mtfsb1. 3
Now bit 3 of the Floating-Point Status and Control
Register is set to 1.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsf (Move to FPSCR Fields) Instruction

Purpose
Copies the contents of a floating-point register into the Floating-Point Status and Control Register under
the control of a field mask.

Syntax

Bits Value

0-5 63

6 /

7-14 FLM

15 /

16-20 FRB

21-30 771

31 Rc

mtfsf FLM, FRB

Chapter 8. Instruction Set 295

mtfsf. FLM, FRB

See Extended Mnemonics of Condition Register Logical Instructions for more information.

Description
The mtfsf instruction copies bits 32-63 of the contents of the floating-point register (FPR) FRB into the
Floating-Point Status and Control Register under the control of the field mask specified by FLM.

The field mask FLM is defined as follows:
Bit Description

7 FPSCR 00-03 is updated with the contents of FRB 32-35.

8 FPSCR 04-07 is updated with the contents of FRB 36-39.

9 FPSCR 08-11 is updated with the contents of FRB 40-43.

10 FPSCR 12-15 is updated with the contents of FRB 44-47.

11 FPSCR 16-19 is updated with the contents of FRB 48-51.

12 FPSCR 20-23 is updated with the contents of FRB 52-55.

13 FPSCR 24-27 is updated with the contents of FRB 56-59.

14 FPSCR 28-31 is updated with the contents of FRB 60-63.

The mtfsf instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

mtfsf None 0 None

mtfsf. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsf instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception (FX), Floating-Point
Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and Floating-Point Overflow
Exception (OX) bits in Condition Register Field 1.

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters

FLM Specifies field mask.
FRB Specifies source floating-point register for operation.

Examples
1. The following code copies the contents of floating-point register 5 bits 32-35 into Floating-Point Status

and Control Register Field 0:
Assume bits 32-63 of FPR 5
contain 0x3000 3000.
mtfsf 0x80,5
Floating-Point Status and Control Register
Field 0 is set to b'0001'.

2. The following code copies the contents of floating-point register 5 bits 32-43 into Floating-Point Status
and Control Register Fields 0-2 and sets Condition Register Field 1 to reflect the result of the
operation:

296 Assembler Language Reference

Assume bits 32-63 of FPR 5
contains 0x2320 0000.
mtfsf. 0xE0,5
Floating-Point Status and Control Register Fields 0-2
now contain b'0010 0011 0010'.
Condition Register Field 1 now contains 0x2.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtfsfi (Move to FPSCR Field Immediate) Instruction

Purpose
Copies an immediate value into a specified Floating-Point Status and Control Register field.

Syntax

Bits Value

0-5 63

6-8 BF

9-10 //

11-15 ///

16-19 U

20 /

21-30 134

31 Rc

mtfsfi BF, I
mtfsfi. BF, I

Description
The mtfsfi instruction copies the immediate value specified by the I parameter into the Floating-Point
Status and Control Register field specified by BF. None of the other fields of the Floating-Point Status and
Control Register are affected.

The mtfsfi instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 1.

Syntax Form FPSCR Bits Record Bit (Rc) Condition Register Field 1

mtfsfi None 0 None

mtfsfi. None 1 FX, FEX, VX, OX

The two syntax forms of the mtfsfi instruction never affect the Floating-Point Status and Control Register
fields. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Floating-Point Exception
(FX), Floating-Point Enabled Exception (FEX), Floating Invalid Operation Exception (VX), and
Floating-Point Overflow Exception (OX) bits in Condition Register Field 1.

Chapter 8. Instruction Set 297

Note: When specifying FPSCR 0-3, some bits cannot be explicitly set or reset.

Parameters

BF Specifies target Floating-Point Status and Control Register field for operation.
I Specifies source immediate value for operation.

Examples
1. The following code sets Floating-Point Status and Control Register Field 6 to b’0100’:

mtfsfi 6,4
Floating-Point Status and Control Register Field 6
is now b'0100'.

2. The following code sets Floating-Point Status and Control Register field 0 to b’0100’ and sets
Condition Register Field 1 to reflect the result of the operation:
mtfsfi. 0,1
Floating-Point Status and Control Register Field 0
is now b'0001'.
Condition Register Field 1 now contains 0x1.

Related Information
Floating-Point Processor .

Interpreting the Contents of a Floating-Point Register .

mtspr (Move to Special-Purpose Register) Instruction

Purpose
Copies the contents of a general-purpose register into a special-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-20 spr

21-30 467

31 Rc

mtspr SPR, RS

Note: The special-purpose register is a split field.

See Extended Mnemonics of Moving from or to Special-Purpose Registers for more information.

Description
The mtspr instruction copies the contents of the source general-purpose register RS into the target
special-purpose register SPR.

298 Assembler Language Reference

The special-purpose register identifier SPR can have any of the values specified in the following table. The
order of the two 5-bit halves of the SPR number is reversed.

SPR Values

Decimal spr5:9 spr0:4 Register Name Privileged

1 00000 00001 XER No

8 00000 01000 LR No

9 00000 01001 CTR No

18 00000 10010 DSISR Yes

19 00000 10011 DAR Yes

22 00000 10110 DEC Yes1

25 00000 11001 SDR1 Yes

26 00000 11010 SRR0 Yes

27 00000 11011 SRR1 Yes

272 01000 10000 SPRG0 Yes

273 01000 10001 SPRG1 Yes

274 01000 10010 SPRG2 Yes

275 01000 10011 SPRG3 Yes

282 01000 11010 EAR Yes

284 01000 11100 TBL Yes

285 01000 11101 TBU Yes

528 10000 10000 IBAT0U Yes

529 10000 10001 IBAT0L Yes

530 10000 10010 IBAT1U Yes

531 10000 10011 IBAT1L Yes

532 10000 10100 IBAT2U Yes

533 10000 10101 IBAT2L Yes

534 10000 10110 IBAT3U Yes

535 10000 10111 IBAT3L Yes

536 10000 11000 DBAT0U Yes

537 10000 11001 DBAT0L Yes

538 10000 11010 DBAT1U Yes

539 10000 11011 DBAT1L Yes

540 10000 11100 DBAT2U Yes

541 10000 11101 DBAT2L Yes

542 10000 11110 DBAT3U Yes

543 10000 11111 DBAT3L Yes

0 00000 00000 MQ2 No

20 00000 10100 RTCU2 Yes

21 00000 10101 RTCL2 Yes

1. Moving to the DEC register is privileged in the PowerPC architecture and in the POWER family
architecture. However, moving from the DEC register is privileged only in the PowerPC architecture.

2. 2Supported only in the POWER family architecture.

Chapter 8. Instruction Set 299

If the SPR field contains any value other than those listed in the SPR Values table, the instruction form is
invalid.

The mtspr instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

SPR Specifies target special-purpose register for operation.
RS Specifies source general-purpose register for operation.

Examples
The following code copies the contents of GPR 5 into the Link Register:
Assume GPR 5 holds 0x1000 00FF.
mtspr 8,5
The Link Register now holds 0x1000 00FF.

Related Information
Fixed-Point Processor .

Fixed-Point Move to or from Special-Purpose Registers Instructions .

mul (Multiply) Instruction

Purpose
Multiplies the contents of two general-purpose registers and stores the result in a third general-purpose
register.

Note: The mul instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 107

31 Rc

POWER family
mul RT, RA, RB
mul. RT, RA, RB
mulo RT, RA, RB
mulo. RT, RA, RB

300 Assembler Language Reference

Description
The mul instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB, and stores
bits 0-31 of the result in the target GPR RT and bits 32-63 of the result in the MQ Register.

The mul instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

mul 0 None 0 None

mul. 0 None 1 LT,GT,EQ,SO

mulo 1 SO,OV 0 None

mulo. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the mul instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction sets the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register to 1 if the product is greater
than 32 bits. If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than
(GT) zero and Equal To (EQ) zero bits in Condition Register Field 0 reflect the result in the low-order 32
bits of the MQ Register.

Parameters

RT Specifies target general-purpose register where the result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6 and the MQ Register:
Assume GPR 4 contains 0x0000 0003.
Assume GPR 10 contains 0x0000 0002.
mul 6,4,10
MQ Register now contains 0x0000 0006.
GPR 6 now contains 0x0000 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6 and the MQ Register, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
mul. 6,4,10
MQ Register now contains 0x1E30 0000.
GPR 6 now contains 0xFFFF DD80.
Condition Register Field 0 now contains 0x4.

3. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6 and the MQ Register, and sets the Summary Overflow and Overflow bits in the Fixed-Point
Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
Assume XER = 0.
mulo 6,4,10
MQ Register now contains 0x1E30 0000.
GPR 6 now contains 0xFFFF DD80.
XER now contains 0xc000 0000.

Chapter 8. Instruction Set 301

4. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6 and the MQ Register, and sets the Summary Overflow, Overflow, and Carry bits in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
Assume XER = 0.
mulo. 6,4,10
MQ Register now contains 0x1E30 0000.
GPR 6 now contains 0xFFFF DD80.
Condition Register Field 0 now contains 0x5.
XER now contains 0xc000 0000.

Related Information
The mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word Unsigned) instruction, mulli or
muli (Multiply Low Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Using Milicode Routines .

mulhd (Multiply High Double Word) Instruction

Purpose
Multiply two 64-bit values together. Place the high-order 64 bits of the result into a register.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 0

22-30 73

31 Rc

POWER family
mulhd RT, RA, RB (Rc=0)
mulhd. RT, RA, RB (Rc=1)

Description
The 64-bit operands are the contents of general purpose registers (GPR) RA and RB. The high-order 64
bits of the 128-bit product of the operands are placed into RT.

Both the operands and the product are interpreted as signed integers.

This instruction may execute faster on some implementations if RB contains the operand having the
smaller absolute value.

302 Assembler Language Reference

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for an operand.
RB Specifies source general-purpose register for an operand.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

mulhdu (Multiply High Double Word Unsigned) Instruction

Purpose
Multiply 2 unsigned 64-bit values together. Place the high-order 64 bits of the result into a register.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 0

22-30 9

31 Rc

POWER family
mulhdu RT, RA, RB (Rc=0)
mulhdu. RT, RA, RB (Rc=1)

Description
Both the operands and the product are interpreted as unsigned integers, except that if Rc = 1 (the mulhw.
instruction) the first three bits of the condition register 0 field are set by signed comparison of the result to
zero.

The 64-bit operands are the contents of RA and RB. The low-order 64 bits of the 128-bit product of the
operands are placed into RT.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: The setting of CR0 bits LT, GT, and EQ is mode-dependent, and reflects overflow of the 64-bit
result.

This instruction may execute faster on some implementations if RB contains the operand having the
smaller absolute value.

Chapter 8. Instruction Set 303

Parameters

RT Specifies target general-purpose register for the result of the computation.
RA Specifies source general-purpose register for the multiplicand.
RB Specifies source general-purpose register for the multiplier.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

mulhw (Multiply High Word) Instruction

Purpose
Computes the most significant 32 bits of the 64-bit product of two 32-bit integers.

Note: The mulhw instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 /

22-30 75

31 Rc

PowerPC
mulhw RT, RA, RB
mulhw. RT, RA, RB

Description
The mulhw instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB and
places the most significant 32 bits of the 64-bit product in the target GPR RT. Both the operands and the
product are interpreted as signed integers.

The mulhw instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form Record Bit (Rc) Condition Register Field 0

mulhw 0 None

mulhw. 1 LT,GT,EQ,SO

If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero and
Equal To (EQ) zero bits in Condition Register Field 0 reflect the result placed in GPR RT, and the
Summary Overflow (SO) bit is copied from the XER to the SO bit in Condition Register Field 0.

304 Assembler Language Reference

Parameters

RT Specifies target general-purpose register where the result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:
Assume GPR 4 contains 0x0000 0003.
Assume GPR 10 contains 0x0000 0002.
mulhw 6,4,10
GPR 6 now contains 0x0000 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
Assume XER(SO) = 0.
mulhw. 6,4,10
GPR 6 now contains 0xFFFF DD80.
Condition Register Field 0 now contains 0x4.

Related Information
The mul (Multiply) instruction, mulhwu (Multiply High Word Unsigned) instruction, mulli or muli (Multiply
Low Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

mulhwu (Multiply High Word Unsigned) Instruction

Purpose
Computes the most significant 32 bits of the 64-bit product of two unsigned 32-bit integers.

Note: The mulhwu instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 /

22-30 11

31 Rc

PowerPC
mulhwu RT, RA, RB

Chapter 8. Instruction Set 305

PowerPC
mulhwu. RT, RA, RB

Description
The mulhwu instruction multiplies the contents of general-purpose register (GPR) RA and GPR RB and
places the most significant 32 bits of the 64-bit product in the target GPR RT. Both the operands and the
product are interpreted as unsigned integers.

Note: Although the operation treats the result as an unsigned integer, the setting of the Condition
Register Field 0 for the Less Than (LT) zero, Greater Than (GT) zero, and Equal To (EQ) zero bits
are interpreted as signed integers.

The mulhwu instruction has two syntax forms. Each syntax form has a different effect on Condition
Register Field 0.

Syntax Form Record Bit (Rc) Condition Register Field 0

mulhwu 0 None

mulhwu. 1 LT,GT,EQ,SO

If the syntax form sets the Record (Rc) bit to 1, then the Less Than (LT) zero, Greater Than (GT) zero and
Equal To (EQ) zero bits in Condition Register Field 0 reflect the result placed in GPR RT, and the
Summary Overflow (SO) bit is copied from the XER to the SO bit in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:
Assume GPR 4 contains 0x0000 0003.
Assume GPR 10 contains 0x0000 0002.
mulhwu 6,4,10
GPR 6 now contains 0x0000 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
Assume XER(SO) = 0.
mulhwu. 6,4,10
GPR 6 now contains 0x0000 2280.
Condition Register Field 0 now contains 0x4.

Related Information
The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulli or muli (Multiply Low
Immediate) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

306 Assembler Language Reference

mulld (Multiply Low Double Word) Instruction

Purpose
Multiply 2 64-bit values together. Place the low-order 64 bits of the result into a register.

Syntax

Bits Value

0-5 31

6-10 D

11-15 A

16-20 B

21 OE

22-30 233

31 Rc

POWER family
mulld RT, RA, RB (OE=0 Rc=0)
mulld. RT, RA, RB (OE=0 Rc=1)
mulldo RT, RA, RB (OE=1 Rc=0)
mulldo. RT, RA, RB (OE=1 Rc=1)

Description
The 64-bit operands are the contents of general purpose registers (GPR) RA and RB. The low-order 64
bits of the 128-bit product of the operands are placed into RT.

Both the operands and the product are interpreted as signed integers. The low-order 64 bits of the product
are independent of whether the operands are regarded as signed or unsigned 64-bit integers. If OE = 1
(the mulldo and mulldo. instructions), then OV is set if the product cannot be represented in 64 bits.

This instruction may execute faster on some implementations if RB contains the operand having the
smaller absolute value.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the infinitely precise result if overflow occurs (see XER below).

v XER:

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects overflow of the
64-bit result.

Parameters

RT Specifies target general-purpose register for the rsult of the computation.
RA Specifies source general-purpose register for an operand.
RB Specifies source general-purpose register for an operand.

Chapter 8. Instruction Set 307

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

mulli or muli (Multiply Low Immediate) Instruction

Purpose
Multiplies the contents of a general-purpose register by a 16-bit signed integer and stores the result in
another general-purpose register.

Syntax

Bits Value

0-5 07

6-10 RT

11-15 RA

16-31 SI

PowerPC
mulli RT, RA, SI

POWER family
muli RT, RA, SI

Description
The mulli and muli instructions sign extend the SI field to 32 bits and then multiply the extended value by
the contents of general-purpose register (GPR) RA. The least significant 32 bits of the 64-bit product are
placed in the target GPR RT.

The mulli and muli instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
SI Specifies 16-bit signed integer for operation.

Examples
The following code multiplies the contents of GPR 4 by 10 and places the result in GPR 6:
Assume GPR 4 holds 0x0000 3000.
mulli 6,4,10
GPR 6 now holds 0x0001 E000.

Related Information
The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word
Unsigned) instruction, mullw or muls (Multiply Low Word) instruction.

Fixed-Point Processor .

308 Assembler Language Reference

Fixed-Point Arithmetic Instructions .

mullw or muls (Multiply Low Word) Instruction

Purpose
Computes the least significant 32 bits of the 64-bit product of two 32-bit integers.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 235

31 Rc

PowerPC
mullw RT, RA, RB
mullw. RT, RA, RB
mullwo RT, RA, RB
mullwo. RT, RA, RB

POWER family
muls RT, RA, RB
muls. RT, RA, RB
mulso RT, RA, RB
mulso. RT, RA, RB

Description
The mullw and muls instructions multiply the contents of general-purpose register (GPR) RA by the
contents of GPR RB, and place the least significant 32 bits of the result in the target GPR RT.

The mullw instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The muls instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

mullw 0 None 0 None

mullw. 0 None 1 LT,GT,EQ

mullwo 1 SO,OV 0 None

mullwo. 1 SO,OV 1 LT,GT,EQ

muls 0 None 0 None

muls. 0 None 1 LT,GT,EQ

Chapter 8. Instruction Set 309

mulso 1 SO,OV 0 None

mulso. 1 SO,OV 1 LT,GT,EQ

The four syntax forms of the mullw instruction, and the four syntax forms of the muls instruction, never
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction sets the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register to 1 if the result is too large to be represented in 32 bits. If the syntax form
sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code multiplies the contents of GPR 4 by the contents of GPR 10 and stores the result in

GPR 6:
Assume GPR 4 holds 0x0000 3000.
Assume GPR 10 holds 0x0000 7000.
mullw 6,4,10
GPR 6 now holds 0x1500 0000.

2. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 4500.
Assume GPR 10 holds 0x0000 7000.
Assume XER(SO) = 0.
mullw. 6,4,10
GPR 6 now holds 0x1E30 0000.
Condition Register Field 0 now contains 0x4.

3. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to
reflect the result of the operation:
Assume GPR 4 holds 0x0000 4500.
Assume GPR 10 holds 0x0007 0000.
Assume XER = 0.
mullwo 6,4,10
GPR 6 now holds 0xE300 0000.
XER now contains 0xc000 0000

4. The following code multiplies the contents of GPR 4 by the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0x0000 4500.
Assume GPR 10 holds 0x7FFF FFFF.
Assume XER = 0.
mullwo. 6,4,10
GPR 6 now holds 0xFFFF BB00.
XER now contains 0xc000 0000
Condition Register Field 0 now contains 0x9.

Related Information
The mul (Multiply) instruction, mulhw (Multiply High Word) instruction, mulhwu (Multiply High Word
Unsigned) instruction, mulli or muli (Multiply Low Immediate) instruction.

310 Assembler Language Reference

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

nabs (Negative Absolute) Instruction

Purpose
Negates the absolute value of the contents of a general-purpose register and stores the result in another
general-purpose register.

Note: The nabs instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 488

31 Rc

POWER family
nabs RT, RA
nabs. RT, RA
nabso RT, RA
nabso. RT, RA

Description
The nabs instruction places the negative absolute value of the contents of general-purpose register (GPR)
RA into the target GPR RT.

The nabs instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

nabs 0 None 0 None

nabs. 0 None 1 LT,GT,EQ,SO

nabso 1 SO,OV 0 None

nabso. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the nabs instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the Summary Overflow (SO) bit is
unchanged and the Overflow (OV) bit is set to zero. If the syntax form sets the Record (Rc) bit to 1, the
instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary
Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 311

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code takes the negative absolute value of the contents of GPR 4 and stores the result in

GPR 6:
Assume GPR 4 contains 0x0000 3000.
nabs 6,4
GPR 6 now contains 0xFFFF D000.

2. The following code takes the negative absolute value of the contents of GPR 4, stores the result in
GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xFFFF FFFF.
nabs. 6,4
GPR 6 now contains 0xFFFF FFFF.

3. The following code takes the negative absolute value of the contents of GPR 4, stores the result in
GPR 6, and sets the Overflow bit in the Fixed-Point Exception Register to 0:
Assume GPR 4 contains 0x0000 0001.
nabso 6,4
GPR 6 now contains 0xFFFF FFFF.

4. The following code takes the negative absolute value of the contents of GPR 4, stores the result in
GPR 6, sets Condition Register Field 0 to reflect the result of the operation, and sets the Overflow bit
in the Fixed-Point Exception Register to 0:
Assume GPR 4 contains 0x8000 0000.
nabso 6,4
GPR 6 now contains 0x8000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

nand (NAND) Instruction

Purpose
Logically complements the result of ANDing the contents of two general-purpose registers and stores the
result in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 476

31 Rc

nand RA, RS, RB

312 Assembler Language Reference

nand. RA, RS, RB

Description
The nand instruction logically ANDs the contents of general-purpose register (GPR) RS with the contents
of GPR RB and stores the complement of the result in the target GPR RA.

The nand instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

nand None None 0 None

nand. None None 1 LT,GT,EQ,SO

The two syntax forms of the nand instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code complements the result of ANDing the contents of GPR 4 and GPR 7 and stores

the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x789A 789B.
nand 6,4,7
GPR 6 now contains 0xEFFF CFFF.

2. The following code complements the result of ANDing the contents of GPR 4 and GPR 7, stores the
result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x789A 789B.
nand. 6,4,7
GPR 6 now contains 0xCFFF CFFF.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

neg (Negate) Instruction

Purpose
Changes the arithmetic sign of the contents of a general-purpose register and places the result in another
general-purpose register.

Chapter 8. Instruction Set 313

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 104

31 Rc

neg RT, RA
neg. RT, RA
nego RT, RA
nego. RT, RA

Description
The neg instruction adds 1 to the one’s complement of the contents of a general-purpose register (GPR)
RA and stores the result in GPR RT.

If GPR RA contains the most negative number (that is, 0x8000 0000), the result of the instruction is the
most negative number and signals the Overflow bit in the Fixed-Point Exception Register if OE is 1.

The neg instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

neg 0 None 0 None

neg. 0 None 1 LT,GT,EQ,SO

nego 1 SO,OV 0 None

nego. 1 SO,OV 1 LT,GT,EQ,SO

The four syntax forms of the neg instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code negates the contents of GPR 4 and stores the result in GPR 6:

314 Assembler Language Reference

Assume GPR 4 contains 0x9000 3000.
neg 6,4
GPR 6 now contains 0x6FFF D000.

2. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x789A 789B.
neg. 6,4
GPR 6 now contains 0x8765 8765.

3. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets the
Fixed-Point Exception Register Summary Overflow and Overflow bits to reflect the result of the
operation:
Assume GPR 4 contains 0x9000 3000.
nego 6,4
GPR 6 now contains 0x6FFF D000.

4. The following code negates the contents of GPR 4, stores the result in GPR 6, and sets Condition
Register Field 0 and the Fixed-Point Exception Register Summary Overflow and Overflow bits to reflect
the result of the operation:
Assume GPR 4 contains 0x8000 0000.
nego. 6,4
GPR 6 now contains 0x8000 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

nor (NOR) Instruction

Purpose
Logically complements the result of ORing the contents of two general-purpose registers and stores the
result in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 124

31 Rc

nor RA, RS, RB
nor. RA, RS, RB

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description
The nor instruction logically ORs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and stores the complemented result in GPR RA.

Chapter 8. Instruction Set 315

The nor instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

nor None None 0 None

nor. None None 1 LT,GT,EQ,SO

The two syntax forms of the nor instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code NORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.
Assume GPR 6 contains 0x789A 789B.
nor 6,4,7
GPR 7 now contains 0x0765 8764.

2. The following code NORs the contents of GPR 4 and GPR 7, stores the result in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x789A 789B.
nor. 6,4,7
GPR 6 now contains 0x0761 8764.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

or (OR) Instruction

Purpose
Logically ORs the contents of two general-purpose registers and stores the result in another
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 444

316 Assembler Language Reference

Bits Value

31 Rc

or RA, RS, RB
or. RA, RS, RB

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description
The or instruction logically ORs the contents of general-purpose register (GPR) RS with the contents of
GPR RB and stores the result in GPR RA.

The or instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

or None None 0 None

or. None None 1 LT,GT,EQ,SO

The two syntax forms of the or instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code logically ORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x789A 789B.
or 6,4,7
GPR 6 now contains 0xF89A 789B.

2. The following code logically ORs the contents of GPR 4 and GPR 7, loads the result in GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x789A 789B.
or. 6,4,7
GPR 6 now contains 0xF89E 789B.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

Chapter 8. Instruction Set 317

orc (OR with Complement) Instruction

Purpose
Logically ORs the contents of a general-purpose register with the complement of the contents of another
general-purpose register and stores the result in a third general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 412

31 Rc

orc RA, RS, RB
orc. RA, RS, RB

Description
The orc instruction logically ORs the contents of general-purpose register (GPR) RS with the complement
of the contents of GPR RB and stores the result in GPR RA.

The orc instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

orc None None 0 None

orc. None None 1 LT,GT,EQ,SO

The two syntax forms of the orc instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code logically ORs the contents of GPR 4 with the complement of the contents of GPR 7

and stores the result in GPR 6:

318 Assembler Language Reference

Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x789A 789B, whose
complement is 0x8765 8764.
orc 6,4,7
GPR 6 now contains 0x9765 B764.

2. The following code logically ORs the contents of GPR 4 with the complement of the contents GPR 7,
stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x789A 789B, whose
complement is 0x8765 8764.
orc. 6,4,7
GPR 6 now contains 0xB765 B764.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

ori or oril (OR Immediate) Instruction

Purpose
Logically ORs the lower 16 bits of the contents of a general-purpose register with a 16-bit unsigned integer
and stores the result in another general-purpose register.

Syntax

Bits Value

0-5 24

6-10 RS

11-15 RA

16-31 UI

PowerPC
ori RA, RS, UI

POWER family
oril RA, RS, UI

See Extended Mnemonics of Fixed-Point Logical Instructions for more information.

Description
The ori and oril instructions logically OR the contents of general-purpose register (GPR) RS with the
concatenation of x’0000’ and a 16-bit unsigned integer, UI, and place the result in GPR RA.

The ori and oril instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 319

UI Specifies a16-bit unsigned integer for operation.

Examples
The following code ORs the lower 16 bits of the contents of GPR 4 with 0x0079 and stores the result in
GPR 6:
Assume GPR 4 contains 0x9000 3000.
ori 6,4,0x0079
GPR 6 now contains 0x9000 3079.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

oris or oriu (OR Immediate Shifted) Instruction

Purpose
Logically ORs the upper 16 bits of the contents of a general-purpose register with a 16-bit unsigned
integer and stores the result in another general-purpose register.

Syntax

Bits Value

0-5 25

6-10 RS

11-15 RA

16-31 UI

PowerPC
oris RA, RS, UI

POWER family
oriu RA, RS, UI

Description
The oris and oriu instructions logically OR the contents of general-purpose register (GPR) RS with the
concatenation of a 16-bit unsigned integer, UI, and x’0000’ and store the result in GPR RA.

The oris and oriu instructions have one syntax form and do not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
UI Specifies a16-bit unsigned integer for operation.

320 Assembler Language Reference

Examples
The following code ORs the upper 16 bits of the contents of GPR 4 with 0x0079 and stores the result in
GPR 6:
Assume GPR 4 contains 0x9000 3000.
oris 6,4,0x0079
GPR 6 now contains 0x9079 3000.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

rac (Real Address Compute) Instruction

Purpose
Translates an effective address into a real address and stores the result in a general-purpose register.

Note: The rac instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21-30 818

31 Rc

POWER family
rac RT, RA, RB
rac. RT, RA, RB

Description
The rac instruction computes an effective address (EA) from the sum of the contents of general-purpose
register (GPR) RA and the contents of GPR RB, and expands the EA into a virtual address.

If RA is not 0 and if RA is not RT, then the rac instruction stores the EA in GPR RA, translates the result
into a real address, and stores the real address in GPR RT.

Consider the following when using the rac instruction:

v If GPR RA is 0, then EA is the sum of the contents of GPR RB and 0.

v EA is expanded into its virtual address and translated into a real address, regardless of whether data
translation is enabled.

v If the translation is successful, the EQ bit in the condition register is set and the real address is placed
in GPR RT.

v If the translation is unsuccessful, the EQ bit is set to 0, and 0 is placed in GPR RT.

v If the effective address specifies an I/O address, the EQ bit is set to 0, and 0 is placed in GPR RT.

Chapter 8. Instruction Set 321

v The reference bit is set if the real address is not in the Translation Look-Aside buffer (TLB).

The rac instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rac None None 0 None

rac None None 1 EQ,SO

The two syntax forms of the rac instruction do not affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction effects the Equal (EQ) and Summary Overflow (SO) bit
in Condition Register Field 0.

Note: The hardware may first search the Translation Look-Aside buffer for the address. If this fails,
the Page Frame table must be searched. In this case, it is not necessary to load a Translation
Look-Aside buffer entry.

Parameters

RT Specifies the target general-purpose register where result of operation is stored.
RA Specifies the source general-purpose register for EA calculation.
RB Specifies the source general-purpose register for EA calculation.

Security
The rac instruction instruction is privileged.

Related Information
Processing and Storage

rfi (Return from Interrupt) Instruction

Purpose
Reinitializes the Machine State Register and continues processing after an interrupt.

Syntax

Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 50

31 /

rfi

322 Assembler Language Reference

Description
The rfi instruction places bits 16-31 of Save Restore Register1 (SRR1) into bits 16-31 of the Machine
State Register (MSR), and then begins fetching and processing instructions at the address contained
inSave Restore Register0 (SRR0), using the new MSR value.

If the Link bit (LK) is set to 1, the contents of the Link Register are undefined.

The rfi instruction has one syntax form and does not affect Condition Register Field 0 or the Fixed-Point
Exception Register.

Security
The rfi instruction is privileged and synchronizing.

Related Information
Branch Processor .

rfid (Return from Interrupt Double Word) Instruction

Purpose
Reinitializes the Machine State Register and continues processing after an interrupt.

Syntax

Bits Value

0-5 19

6-10 00000

11-15 00000

16-20 00000

21-30 18

31 0

rfid

Description
Bits 0, 48-55, 57-59, and 62-63 from the Save Restore Register 1 (SRR1) are placed into the
corresponding bits of the Machine State Register (MSR). If the new MSR value does not enable any
pending exceptions, then the next instruction is fetched under control of the new MSR value. If the SF bit
in the MSR is 1, the address found in bits 0-61 of SRR0 (fullword aligned address) becomes the next
instruction address. If the SF bit is zero, then bits 32-61 of SRR0, concatenated with zeros to create a
word-aligned adderss, are placed in the low-order 32-bits of SRR0. The high-order 32 bits are cleared. If
the new MSR value enables one or more pending exceptions, the exception associated with the highest
priority pending exception is generated; in this case the value placed into SRR0 by the exception
processing mechanism is the address of the instruction that would have been executed next had the
exception not occurred.

Other registers altered:

v MSR

Chapter 8. Instruction Set 323

Security
The rfid instruction is privileged and synchronizing.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation causes an
illegal instruction type program exception.

rfsvc (Return from SVC) Instruction

Purpose
Reinitializes the Machine State Register and starts processing after a supervisor call (svc).

Note: The rfsvc instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 19

6-10 ///

11-15 ///

16-20 ///

21-30 82

31 LK

POWER family

rfsvc

Description
The rfsvc instruction reinitializes the Machine State Register (MSR) and starts processing after a
supervisor call. This instruction places bits 16-31 of the Count Register into bits 16-31 of the Machine
State Register (MSR), and then begins fetching and processing instructions at the address contained in
the Link Register, using the new MSR value.

If the Link bit (LK) is set to 1, then the contents of the Link Register are undefined.

The rfsvc instruction has one syntax form and does not affect Condition Register Field 0 or the
Fixed-Point Exception Register.

Security
The rfsvc instruction is privileged and synchronizing.

Related Information
The svc (Supervisor Call) instruction.

Branch Processor .

System Call Instructions .

324 Assembler Language Reference

rldcl (Rotate Left Double Word then Clear Left) Instruction

Purpose
Rotate the contents of a general purpose register left by the number of bits specified by the contents of
another general purpose register. Generate a mask that is ANDed with the result of the shift operation.
Store the result of this operation in another general purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 B

21-26 mb

27-30 8

31 Rc

POWER family
rldcl RA, RS, RB, MB (Rc=0)
rldcl. RA, RS, RB, MB (Rc=1)

Description
The contents of general purpose register (GPR) RS are rotated left the number of bits specified by the
operand in the low-order six bits of RB. A mask is generated having 1 bits from bit MB through bit 63 and
0 bits elsewhere. The rotated data is ANDed with the generated mask and the result is placed into RA.

Note that the rldcl instruction can be used to extract and rotate bit fields using the methods shown below:

v To extract an n-bit field, that starts at variable bit position b in register RS, right-justified into RA
(clearing the remaining 64 - n bits of RA), set the low-order six bits of RB to b + n and MB = 64 - n.

v To rotate the contents of a register left by variable n bits, set the low-order six bits of RB to n and MB =
0, and to shift the contents of a register right, set the low-order six bits of RB to(64 - n), and MB = 0.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies the target general purpose register for the result of the instruction.
RS Specifies the source general purpose register containing the operand.
RB Specifies the source general purpose register containing the shift value.
MB Specifies the begin value (bit number) of the mask for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Chapter 8. Instruction Set 325

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction

Purpose
This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 0

30 sh

31 Rc

PowerPC64
rldicl rA, rS, rB, MB (Rc=0)
rldicl. rA, rS, rB, MB (Rc=1)

Description
The contents of rS are rotated left the number of bits specified by operand SH. A mask is generated
having 1 bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into rA.

This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Note that rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

To extract an n-bit field, that starts at bit position b in rS, right-justified into rA (clearing the remaining 64 -
n bits of rA), set SH = b + n and MB = 64 - n.

To rotate the contents of a register left by n bits, set SH = n and MB = 0; to rotate the contents of a
register right by n bits, set SH = (64 - n), and MB = 0.

To shift the contents of a register right by n bits, set SH = 64 - n and MB = n.

To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

rA ***DESCRIPTION***
rS ***DESCRIPTION***

326 Assembler Language Reference

rB ***DESCRIPTION***
MB ***DESCRIPTION***

Examples

Related Information

rldcr (Rotate Left Double Word then Clear Right) Instruction

Purpose
Rotate the contents of a general purpose register left by the number of bits specified by the contents of
another general purpose register. Generate a mask that is ANDed with the result of the shift operation.
Store the result of this operation in another general purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 B

21-26 me

27-30 9

31 Rc

POWER family
rldcr RA, RS, RB, ME (Rc=0)
rldcr. RA, RS, RB, ME (Rc=1)

Description
The contents of general purpose register (GPR) RS are rotated left the number of bits specified by the
low-order six bits of RB. A mask is generated having 1 bits from bit 0 through bit ME and 0 bits elsewhere.
The rotated data is ANDed with the generated mask and the result is placed into RA.

Note that rldcr can be used to extract and rotate bit fields using the methods shown below:

v To extract an n-bit field, that starts at variable bit position b in register RS, left-justified into RA (clearing
the remaining 64 - n bits of RA), set the low-order six bits of RB to b and ME = n - 1.

v To rotate the contents of a register left by variable n bits, set the low-order six bits of RB to n and ME =
63, and to shift the contents of a register right, set the low-order six bits of RB to(64 - n), and ME = 63.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters
RS SH Specifies shift value for operation. MB Specifies begin value of mask for operation. ME BM
Specifies value of 32-bit mask

Chapter 8. Instruction Set 327

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies the source general purpose register containing the shift value.
ME Specifies end value of mask for operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

rldic (Rotate Left Double Word Immediate then Clear) Instruction

Purpose
The contents of a general purpose register are rotated left a specified number of bits, then masked with a
bit-field to clear some number of low-order and high-order bits. The result is placed in another general
purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 2

30 sh

31 Rc

POWER family
rldicl RA, RS, SH, MB (Rc=0)
rldicl. RA, RS, SH, MB (Rc=1)

Description
The contents of general purpose register (GPR) RS are rotated left the number of bits specified by
operand SH. A mask is generated having 1 bits from bit MB through bit 63 - SH and 0 bits elsewhere. The
rotated data is ANDed with the generated mask and the result is placed into GPR RA.

Note that rldic can be used to clear and shift bit fields using the methods shown below:

v To clear the high-order b bits of the contents of a register and then shift the result left by n bits, set SH
= n and MB = b - n.

v To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

328 Assembler Language Reference

Parameters

RA Specifies the target general purpose register for the result of the instruction.
RS Specifies the source general purpose register containing the operand.
SH Specifies the (immediate) shift value for the operation.
MB Specifies the begin value of the bit-mask for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction

Purpose
Rotate the contents of a general purpose register left by a specified number of bits, clearing a specified
number of high-order bits. The result is placed in another general purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 mb

27-29 0

30 sh

31 Rc

POWER family
rldicl RA, RS, SH, MB (Rc=0)
rldicl. RA, RS, SH, MB (Rc=1)

Description
The contents of general purpose register RS are rotated left the number of bits specified by operand SH. A
mask is generated containing 1 bits from bit MB through bit 63 and 0 bits elsewhere. The rotated data is
ANDed with the generated mask and the result is placed into GPR RA.

Note that rldicl can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

v To extract an n-bit field, which starts at bit position b in RS, right-justified into GPR RA (clearing the
remaining 64 - n bits of GPR RA), set SH = b + n and MB = 64 - n.

v To rotate the contents of a register left by n bits, set SH = n and MB = 0; to rotate the contents of a
register right by n bits, set SH = (64 - n), and MB = 0.

v To shift the contents of a register right by n bits, set SH = 64 - n and MB = n.

v To clear the high-order n bits of a register, set SH = 0 and MB = n.

Other registers altered:

Chapter 8. Instruction Set 329

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies the target general purpose register for the result of the instruction.
RS Specifies the source general purpose register containing the operand.
SH Specifies the (immediate) shift value for the operation.
MB Specifies the begin value (bit number) of the mask for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

rldicr (Rotate Left Double Word Immediate then Clear Right)
Instruction

Purpose
Rotate the contents of a general purpose register left by the number of bits specified by an immediate
value. Clear a specified number of low-order bits. Place the results in another general purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

21-26 me

27-29 1

30 sh

31 Rc

POWER family
rldicr RA, RS, SH, MB (Rc=0)
rldicr. RA, RS, SH, MB (Rc=1)

Description
The contents of general purpose register (GPR) RS are rotated left the number of bits specified by
operand SH. A mask is generated having 1 bits from bit 0 through bit ME and 0 bits elsewhere. The
rotated data is ANDed with the generated mask and the result is placed into GPR RA.

Note that rldicr can be used to extract, rotate, shift, and clear bit fields using the methods shown below:

v To extract an n-bit field, that starts at bit position b in GPR RS, left-justified into GPR RA (clearing the
remaining 64 - n bits of GPR RA), set SH = b and ME = n - 1.

v To rotate the contents of a register left (right) by n bits, set SH = n (64 - n) and ME = 63.

v To shift the contents of a register left by n bits, by setting SH = n and ME = 63 - n.

330 Assembler Language Reference

v To clear the low-order n bits of a register, by setting SH = 0 and ME = 63 - n.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies the target general purpose register for the result of the instruction.
RS Specifies the source general purpose register containing the operand.
SH Specifies the (immediate) shift value for the operation.
ME Specifies the end value (bit number) of the mask for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

rldimi (Rotate Left Double Word Immediate then Mask Insert)
Instruction

Purpose
The contents of a general purpose register are rotated left a specified number of bits. A generated mask is
used to insert a specified bit-field into the corresponding bit-field of another general purpose register.

Syntax

Bits Value

0-5 30

6-10 S

11-15 A

16-20 sh

2126 mb

27-29 3

30 sh

31 Rc

POWER family
rldimi RA, RS, SH, MB (Rc=0)
rldimi. RA, RS, SH, MB (Rc=1)

Description
The contents of general purpose register (GPR) RS are rotated left the number of bits specified by
operand SH. A mask is generated having 1 bits from bit MB through bit 63 - SH and 0 bits elsewhere. The
rotated data is inserted into RA under control of the generated mask.

Note that rldimi can be used to insert an n-bit field, that is right-justified in RS, into RA starting at bit
position b, by setting SH = 64 - (b + n) and MB = b.

Chapter 8. Instruction Set 331

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies the target general purpose register for the result of the instruction.
RS Specifies the source general purpose register containing the operand.
SH Specifies the (immediate) shift value for the operation.
MB Specifies the begin value of the bit-mask for the operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

rlmi (Rotate Left Then Mask Insert) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by the number of bits specified in another
general-purpose register and stores the result in a third general-purpose register under the control of a
generated mask.

Note: The rlmi instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 22

6-10 RS

11-15 RA

16-20 RB

21-25 MB

26-30 ME

31 Rc

POWER family
rlmi RA, RS, RB, MB, ME
rlmi. RA, RS, RB, MB, ME
rlmi RA, RS, RB, BM
rlmi. RA, RS, RB, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description
The rlmi instruction rotates the contents of the source general-purpose register (GPR) RS to the left by
the number of bits specified by bits 27-31 of GPR RB and then stores the rotated data in GPR RA under
control of a 32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME).

332 Assembler Language Reference

Consider the following when using the rlmi instruction:

v If a mask bit is 1, the instruction places the associated bit of rotated data in GPR RA; if a mask bit is 0,
the GPR RA bit remains unchanged.

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting
point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the
ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The parameter BM can also be used to specify the mask for this instruction. The assembler will generate
the MB and ME parameters from BM.

The rlmi instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rlmi None None 0 None

rlmi. None None 1 LT,GT,EQ,SO

The two syntax forms of the rlmi instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies general-purpose register that contains number of bits for rotation of data.
MB Specifies begin value of mask for operation.
ME Specifies end value of mask for operation.
BM Specifies value of 32-bit mask.

Examples
1. The following code rotates the contents of GPR 4 by the value contained in bits 27-31 in GPR 5 and

stores the masked result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0002.
Assume GPR 6 contains 0xFFFF FFFF.
rlmi 6,4,5,0,0x1D
GPR 6 now contains 0x4000 C003.
Under the same conditions
rlmi 6,4,5,0xFFFFFFFC
will produce the same result.

2. The following code rotates the contents of GPR 4 by the value contained in bits 27-31 in GPR 5,
stores the masked result in GPR 6, and sets Condition Register Field 0 to reflect the result of the
operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0002.
GPR 6 is the target register and contains 0xFFFF FFFF.
rlmi. 6,4,5,0,0x1D
GPR 6 now contains 0xC010 C003.

Chapter 8. Instruction Set 333

CRF 0 now contains 0x8.
Under the same conditions
rlmi. 6,4,5,0xFFFFFFFC
will produce the same result.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert)
Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits and stores the
result in another general-purpose register under the control of a generated mask.

Syntax

Bits Value

0-5 20

6-10 RS

11-15 RA

16-20 SH

21-25 ME

26-30 MB

31 Rc

PowerPC
rlwimi RA, RS, SH, MB, ME
rlwimi. RA, RS, SH, MB, ME
rlwimi RA, RS, SH, BM
rlwimi. RA, RS, SH, BM

POWER family
rlimi RA, RS, SH, MB, ME
rlimi. RA, RS, SH, MB, ME
rlimi RA, RS, SH, BM
rlimi. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description
The rlwimi and rlimi instructions rotate left the contents of the source general-purpose register (GPR) RS
by the number of bits by the SH parameter and then store the rotated data in GPR RA under control of a
32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME). If a mask bit is 1,
the instructions place the associated bit of rotated data in GPR RA; if a mask bit is 0, the GPR RA bit
remains unchanged.

334 Assembler Language Reference

Consider the following when using the rlwimi and rlimi instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting
point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the
ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will
generate the MB and ME parameters from the BM value.

The rlwimi and rlimi instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rlwimi None None 0 None

rlwimi. None None 1 LT,GT,EQ,SO

rlimi None None 0 None

rlimi. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwimi and rlimi instructions never affect the Fixed-Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than
(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies shift value for operation.
MB Specifies begin value of mask for operation.
ME Specifies end value of mask for operation.
BM Specifies value of 32-bit mask.

Examples
1. The following code rotates the contents of GPR 4 to the left by 2 bits and stores the masked result in

GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 6 contains 0x0000 0003.
rlwimi 6,4,2,0,0x1D
GPR 6 now contains 0x4000 C003.
Under the same conditions
rlwimi 6,4,2,0xFFFFFFFC
will produce the same result.

2. The following code rotates the contents of GPR 4 to the left by 2 bits, stores the masked result in GPR
6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x789A 789B.
Assume GPR 6 contains 0x3000 0003.
rlwimi. 6,4,2,0,0x1A
GPR 6 now contains 0xE269 E263.
CRF 0 now contains 0x8.
Under the same conditions
rlwimi. 6,4,2,0xFFFFFFE0
will produce the same result.

Chapter 8. Instruction Set 335

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask)
Instruction

Purpose
Logically ANDs a generated mask with the result of rotating left by a specified number of bits in the
contents of a general-purpose register.

Syntax

Bits Value

0-5 21

6-10 RS

11-15 RA

16-20 SH

21-25 MB

26-30 ME

31 Rc

PowerPC
rlwinm RA, RS, SH, MB, ME
rlwinm. RA, RS, SH, MB, ME
rlwinm RA, RS, SH, BM
rlwinm. RA, RS, SH, BM

POWER family
rlinm RA, RS, SH, MB, ME
rlinm. RA, RS, SH, MB, ME
rlinm RA, RS, SH, BM
rlinm. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description
The rlwinm and rlinm instructions rotate left the contents of the source general-purpose register (GPR)
RS by the number of bits specified by the SH parameter, logically AND the rotated data with a 32-bit
generated mask defined by the values in Mask Begin (MB) and Mask End (ME), and store the result in
GPR RA.

Consider the following when using the rlwinm and rlinm instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting
point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

336 Assembler Language Reference

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the
ME value +1 and the MB value -1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will
generate the MB and ME parameters from the BM value.

The rlwinm and rlinm instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rlwinm None None 0 None

rlwinm. None None 1 LT,GT,EQ,SO

rlinm None None 0 None

rlinm. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwinm and rlinm instructions never affect the Fixed-Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than
(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies shift value for operation.
MB Specifies begin value of mask for operation.
ME Specifies end value of mask for operation.
BM Specifies value of 32-bit mask.

Examples
1. The following code rotates the contents of GPR 4 to the left by 2 bits and logically ANDs the result with

a mask of 29 ones:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 6 contains 0xFFFF FFFF.
rlwinm 6,4,2,0,0x1D
GPR 6 now contains 0x4000 C000.
Under the same conditions
rlwinm 6,4,2,0xFFFFFFFC
will produce the same result.

2. The following code rotates the contents of GPR 4 to the left by 2 bits, logically ANDs the result with a
mask of 29 ones, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 6 contains 0xFFFF FFFF.
rlwinm. 6,4,2,0,0x1D
GPR 6 now contains 0xC010 C000.
CRF 0 now contains 0x8.
Under the same conditions
rlwinm. 6,4,2,0xFFFFFFFC
will produce the same result.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 337

rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by the number of bits specified in another
general-purpose register, logically ANDs the rotated data with the generated mask, and stores the result in
a third general-purpose register.

Syntax

Bits Value

0-5 23

6-10 RS

11-15 RA

16-20 RB

21-25 MB

26-30 ME

31 Rc

PowerPC
rlwnm RA, RS, RB, MB, ME
rlwnm. RA, RS, RB, MB, ME
rlwnm RA, RS, SH, BM
rlwnm. RA, RS, SH, BM

POWER family
rlnm RA, RS, RB, MB, ME
rlnm. RA, RS, RB, MB, ME
rlnm RA, RS, SH, BM
rlnm. RA, RS, SH, BM

See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for more information.

Description
The rlwnm and rlnm instructions rotate the contents of the source general-purpose register (GPR) RS to
the left by the number of bits specified by bits 27-31 of GPR RB, logically AND the rotated data with a
32-bit generated mask defined by the values in Mask Begin (MB) and Mask End (ME), and store the result
in GPR RA.

Consider the following when using the rlwnm and rlnm instructions:

v If the MB value is less than the ME value + 1, then the mask bits between and including the starting
point and the end point are set to ones. All other bits are set to zeros.

v If the MB value is the same as the ME value + 1, then all 32 mask bits are set to ones.

v If the MB value is greater than the ME value + 1, then all of the mask bits between and including the
ME value +1 and the MB value - 1 are set to zeros. All other bits are set to ones.

The BM parameter can also be used to specify the mask for these instructions. The assembler will
generate the MB and ME parameters from the BM value.

338 Assembler Language Reference

The rlwnm and rlnm instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rlwnm None None 0 None

rlwnm. None None 1 LT,GT,EQ,SO

rlnm None None 0 None

rlnm. None None 1 LT,GT,EQ,SO

The syntax forms of the rlwnm and rlnm instructions never affect the Fixed-Point Exception Register. If
the syntax form sets the Record (Rc) bit to 1, the instructions affect the Less Than (LT) zero, Greater Than
(GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies general-purpose register that contains number of bits for rotation of data.
MB Specifies begin value of mask for operation.
ME Specifies end value of mask for operation.
SH Specifies shift value for operation.
BM Specifies value of 32-bit mask.

Examples
1. The following code rotates the contents of GPR 4 to the left by 2 bits, logically ANDs the result with a

mask of 29 ones, and stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0002.
Assume GPR 6 contains 0xFFFF FFFF.
rlwnm 6,4,5,0,0x1D
GPR 6 now contains 0x4000 C000.
Under the same conditions
rlwnm 6,4,5,0xFFFFFFFC
will produce the same result.

2. The following code rotates GPR 4 to the left by 2 bits, logically ANDs the result with a mask of 29
ones, stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the
operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0002.
Assume GPR 6 contains 0xFFFF FFFF.
rlwnm. 6,4,5,0,0x1D
GPR 6 now contains 0xC010 C000.
CRF 0 now contains 0x8.
Under the same conditions
rlwnm. 6,4,5,0xFFFFFFFC
will produce the same result.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 339

rrib (Rotate Right and Insert Bit) Instruction

Purpose
Rotates bit 0 in a general-purpose register to the right by the number of bits specified by another
general-purpose register and stores the rotated bit in a third general-purpose register.

Note: The rrib instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 537

31 Rc

POWER family
rrib RA, RS, RB
rrib. RA, RS, RB

Description
The rrib instruction rotates bit 0 of the source general-purpose register (GPR) RS to the right by the
number of bits specified by bits 27-31 of GPR RB and then stores the rotated bit in GPR RA.

The rrib instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

rrib None None 0 None

rrib. None None 1 LT,GT,EQ,SO

The two syntax forms of the rrib instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies general-purpose register that contains the number of bits for rotation of data.

Examples
1. The following code rotates bit 0 of GPR 5 to the right by 4 bits and stores its value in GPR 4:

340 Assembler Language Reference

Assume GPR 5 contains 0x0000 0000.
Assume GPR 6 contains 0x0000 0004.
Assume GPR 4 contains 0xFFFF FFFF.
rrib 4,5,6
GPR 4 now contains 0xF7FF FFFF.

2. The following code rotates bit 0 of GPR 5 to the right by 4 bits, stores its value in GPR 4, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 5 contains 0xB004 3000.
Assume GPR 6 contains 0x0000 0004.
Assume GPR 4 contains 0x0000 0000.
rrib. 4,5,6
GPR 4 now contains 0x0800 0000.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sc (System Call) Instruction

Purpose
Calls the system to provide a service.

Note: The sc instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 17

6-10 ///

11-15 ///

16-29 ///

30 1

31 /

PowerPC

sc

Description
The sc instruction causes a system call interrupt. The effective address (EA) of the instruction following
the sc instruction is placed into the Save Restore Register 0 (SRR0). Bits 0, 5-9, and 16-31 of the
Machine State Register (MSR) are placed into the corresponding bits of Save Restore Register 1 (SRR1).
Bits 1-4 and 10-15 of SRR1 are set to undefined values.

The sc instruction has one syntax form. The syntax form does not affect the Machine State Register.

Note: The sc instruction has the same op code as the svc (Supervisor Call) instruction.

Chapter 8. Instruction Set 341

Related Information
The svc (Supervisor Call) instruction.

Branch Processor .

System Call Instructions .

Functional Differences for POWER family and PowerPC Instructions .

si (Subtract Immediate) Instruction

Purpose
Subtracts the value of a signed integer from the contents of a general-purpose register and places the
result in a general-purpose register.

Syntax

Bits Value

0-5 12

6-10 RT

11-15 RA

16-31 SI

si RT, RA, SINT

Description
The si instruction subtracts the 16-bit signed integer specified by the SINT parameter from the contents of
general-purpose register (GPR) RA and stores the result in the target GPR RT. This instruction has the
same effect as the ai instruction used with a negative SINT value. The assembler negates SINT and
places this value (SI) in the machine instruction:
ai RT,RA,-SINT

The si instruction has one syntax form and can set the Carry Bit of the Fixed-Point Exception Register; it
never affects Condition Register Field 0.

Parameters

RT Specifies target general-purpose register for operation.
RA Specifies source general-purpose register for operation.
SINT Specifies 16-bit signed integer for operation.
SI Specifies the negative of the SINT value.

Examples
The following code subtracts 0xFFFF F800 from the contents of GPR 4, stores the result in GPR 6, and
sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x0000 0000
si 6,4,0xFFFFF800
GPR 6 now contains 0x0000 0800
This instruction has the same effect as
ai 6,4,-0xFFFFF800.

342 Assembler Language Reference

Related Information
The addic or ai (Add Immediate Carrying) instruction.

Branch Processor .

Fixed-Point Arithmetic Instructions .

si. (Subtract Immediate and Record) Instruction

Purpose
Subtracts the value of a signed integer from the contents of a general-purpose register and places the
result in a second general-purpose register.

Syntax

Bits Value

0-5 13

6-10 RT

11-15 RA

16-31 SI

si. RT, RA, SINT

Description
The si. instruction subtracts the 16-bit signed integer specified by the SINT parameter from the contents of
general-purpose register (GPR) RA and stores the result into the target GPR RT. This instruction has the
same effect as the ai. instruction used with a negative SINT. The assembler negates SINT and places this
value (SI) in the machine instruction:
ai. RT,RA,-SINT

The si. instruction has one syntax form and can set the Carry Bit of the Fixed-Point Exception Register.
This instruction also affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, or
Summary Overflow (SO) bit in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register for operation.
RA Specifies source general-purpose register for operation.
SINT Specifies 16-bit signed integer for operation.
SI Specifies the negative of the SINT value.

Examples
The following code subtracts 0xFFFF F800 from the contents of GPR 4, stores the result in GPR 6, and
sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to reflect the result
of the operation:
Assume GPR 4 contains 0xEFFF FFFF.
si. 6,4,0xFFFFF800
GPR 6 now contains 0xF000 07FF.
This instruction has the same effect as
ai. 6,4,-0xFFFFF800.

Chapter 8. Instruction Set 343

Related Information
The addic. or ai. (Add Immediate Carrying and Record) instruction.

Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

sld (Shift Left Double Word) Instruction

Purpose
Shift the contents of a general purpose register left by the number of bits specified by the contents of
another general purpose register.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 27

31 Rc

POWER family
sld RA, RS, RB (OE=0 Rc=0)
sld. RA, RS, RB (OE=0 Rc=1)

Description
The contents of general purpose register (GPR) RS are shifted left the number of bits specified by the
low-order seven bits of GPR RB. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated
positions on the right. The result is placed into GPR RA. Shift amounts from 64 to 127 give a zero result.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies target general-purpose register for the result of the operation.
RS Specifies source general-purpose register containing the operand for thr shift operation.
RB The low-order seven bits specify the distance to shift the operand.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

344 Assembler Language Reference

sle (Shift Left Extended) Instruction

Purpose
Shifts the contents of a general-purpose register to the left by a specified number of bits, puts a copy of
the rotated data in the MQ Register, and places the result in another general-purpose register.

Note: The sle instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 153

31 Rc

POWER family
sle RA, RS, RB
sle. RA, RS, RB

Description
The sle instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N
bits, where N is the shift amount specified in bits 27-31 of GPR RB. The instruction also stores the rotated
word in the MQ Register and the logical AND of the rotated word and the generated mask in GPR RA.
The mask consists of 32 minus N ones followed by N zeros.

The sle instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sle None None 0 None

sle. None None 1 LT,GT,EQ,SO

The two syntax forms of the sle instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 345

Examples
1. The following code rotates the contents of GPR 4 to the left by 4 bits, places a copy of the rotated

data in the MQ Register, and places the result of ANDing the rotated data with a mask into GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0004.
sle 6,4,5
GPR 6 now contains 0x0003 0000.
The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, places a copy of the rotated
data in the MQ Register, places the result of ANDing the rotated data with a mask into GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0004.
sle. 6,4,5
GPR 6 now contains 0x0043 0000.
The MQ Register now contains 0x0043 000B.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sleq (Shift Left Extended with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the
result with the contents of the MQ Register under control of a mask, and places the rotated word in the
MQ Register and the masked result in another general-purpose register.

Note: The sleq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 217

31 Rc

POWER family
sleq RA, RS, RB
sleq. RA, RS, RB

Description
The sleq instruction rotates the contents of the source general-purpose register (GPR) RS left N bits,
where N is the shift amount specified in bits 27-31 of GPR RB. The instruction merges the rotated word
with the contents of the MQ Register under control of a mask, and stores the rotated word in the MQ
Register and merged word in GPR RA. The mask consists of 32 minus N ones followed by N zeros.

346 Assembler Language Reference

The sleq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sleq None None 0 None

sleq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sleq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, and places the rotated word in the MQ Register
and the result in GPR 6 :
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0004.
Assume the MQ Register contains 0xFFFF FFFF.
sleq 6,4,5
GPR 6 now contains 0x0003 000F.
The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the
contents of the MQ Register under a generated mask, places the rotated word in the MQ Register and
the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0004.
Assume the MQ Register contains 0xFFFF FFFF.
sleq. 6,4,5
GPR 6 now contains 0x0043 000F.
The MQ Register now contains 0x0043 000B.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sliq (Shift Left Immediate with MQ) Instruction

Purpose
Shifts the contents of a general-purpose register to the left by a specified number of bits in an immediate
value, and places the rotated contents in the MQ Register and the result in another general-purpose
register.

Note: The sliq instruction is supported only in the POWER family architecture.

Chapter 8. Instruction Set 347

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 184

31 Rc

POWER family
sliq RA, RS, SH
sliq. RA, RS, SH

Description
The sliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N
bits, where N is the shift amount specified by SH. The instruction stores the rotated word in the MQ
Register and the logical AND of the rotated word and places the generated mask in GPR RA. The mask
consists of 32 minus N ones followed by N zeros.

The sliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sliq None None 0 None

sliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sliq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies immediate value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 20 bits, ANDs the rotated data with a

generated mask, and places the rotated word into the MQ Register and the result in GPR 6:
Assume GPR 4 contains 0x1234 5678.
sliq 6,4,0x14
GPR 6 now contains 0x6780 0000.
MQ Register now contains 0x6781 2345.

2. The following code rotates the contents of GPR 4 to the left by 16 bits, ANDs the rotated data with a
generated mask, places the rotated word into the MQ Register and the result in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:

348 Assembler Language Reference

Assume GPR 4 contains 0x1234 5678.
sliq. 6,4,0x10
GPR 6 now contains 0x5678 0000.
The MQ Register now contains 0x5678 1234.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slliq (Shift Left Long Immediate with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits in an immediate
value, merges the result with the contents of the MQ Register under control of a mask, and places the
rotated word in the MQ Register and the masked result in another general-purpose register.

Note: The slliq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 248

31 Rc

POWER family
slliq RA, RS, SH
slliq. RA, RS, SH

Description
The slliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N
bits, where N is the shift amount specified in SH, merges the result with the contents of the MQ Register,
and stores the rotated word in the MQ Register and the final result in GPR RA. The mask consists of 32
minus N ones followed by N zeros.

The slliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

slliq None None 0 None

slliq. None None 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 349

The two syntax forms of the slliq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies immediate value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 3 bits, merges the rotated data with the

contents of the MQ Register under a generated mask, and places the rotated word in the MQ Register
and the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume the MQ Register contains 0xFFFF FFFF.
slliq 6,4,0x3
GPR 6 now contains 0x8001 8007.
The MQ Register now contains 0x8001 8004.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the
contents of the MQ Register under a generated mask, places the rotated word in the MQ Register and
the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume the MQ Register contains 0xFFFF FFFF.
slliq. 6,4,0x4
GPR 6 now contains 0x0043 000F.
The MQ Register contains 0x0043 000B.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sllq (Shift Left Long with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by the number of bits specified in a
general-purpose register, merges either the rotated data or a word of zeros with the contents of the MQ
Register, and places the result in a third general-purpose register.

Note: The sliq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 216

350 Assembler Language Reference

Bits Value

31 Rc

POWER family
sllq RA, RS, RB
sllq. RA, RS, RB

Description
The sllq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N
bits, where N is the shift amount specified in bits 27-31 of GPR RB. The merge depends on the value of
bit 26 in GPR RB.

Consider the following when using the sllq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated. The
rotated word is then merged with the contents of the MQ Register under the control of this generated
mask.

v If bit 26 of GPR RB is 1, then a mask of N ones followed by 32 minus N zeros is generated. A word of
zeros is then merged with the contents of the MQ Register under the control of this generated mask.

The resulting merged word is stored in GPR RA. The MQ Register is not altered.

The sllq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sllq None None 0 None

sllq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sllq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 4 bits, merges a word of zeros with the

contents of the MQ Register under a mask, and places the merged result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0024.
Assume MQ Register contains 0xABCD EFAB.
sllq 6,4,5
GPR 6 now contains 0xABCD EFA0.
The MQ Register remains unchanged.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, merges the rotated data with the
contents of the MQ Register under a mask, places the merged result in GPR 6, and sets Condition
Register Field 0 to reflect the result of the operation:

Chapter 8. Instruction Set 351

Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0004.
Assume MQ Register contains 0xFFFF FFFF.
sllq. 6,4,5
GPR 6 now contains 0x0043 000F.
The MQ Register remains unchanged.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slq (Shift Left with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by the number of bits specified in a
general-purpose register, places the rotated word in the MQ Register, and places the logical AND of the
rotated word and a generated mask in a third general-purpose register.

Note: The slq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 152

31 Rc

POWER family
slq RA, RS, RB
slq. RA, RS, RB

Description
The slq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by N
bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word in the MQ
Register. The mask depends on bit 26 of GPR RB.

Consider the following when using the slq instruction:

v If bit 26 of GPR RB is 0, then a mask of 32 minus N ones followed by N zeros is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in GPR RA.

The slq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

352 Assembler Language Reference

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

slq None None 0 None

slq. None None 1 LT,GT,EQ,SO

The two syntax forms of the slq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 4 bits, places the rotated word in the

MQ Register, and places logical AND of the rotated word and the generated mask in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0024.
slq 6,4,5
GPR 6 now contains 0x0000 0000.
The MQ Register now contains 0x0003 0009.

2. The following code rotates the contents of GPR 4 to the left by 4 bits, places the rotated word in the
MQ Register, places logical AND of the rotated word and the generated mask in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0004.
slq. 6,4,5
GPR 6 now contains 0x0043 0000.
The MQ Register now contains 0x0043 000B.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

slw or sl (Shift Left Word) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits and places the
masked result in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

Chapter 8. Instruction Set 353

Bits Value

16-20 RB

21-30 24

31 Rc

PowerPC
slw RA, RS, RB
slw. RA, RS, RB

POWER family
sl RA, RS, RB
sl. RA, RS, RB

Description
The slw and sl instructions rotate the contents of the source general-purpose register (GPR) RS to the left
N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and store the logical AND of the
rotated word and the generated mask in GPR RA.

Consider the following when using the slw and sl instructions:

v If bit 26 of GPR RB is 0, then a mask of 32-N ones followed by N zeros is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

The slw and sl instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

slw None None 0 None

slw. None None 1 LT,GT,EQ,SO

sl None None 0 None

sl. None None 1 LT,GT,EQ,SO

The two syntax forms of the slw instruction, and the two syntax forms of the sl instruction, never affect the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, these instructions affect
the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 15 bits and stores the result of ANDing

the rotated data with a generated mask in GPR 6:

354 Assembler Language Reference

Assume GPR 5 contains 0x0000 002F.
Assume GPR 4 contains 0xFFFF FFFF.
slw 6,4,5
GPR 6 now contains 0x0000 0000.

2. The following code rotates the contents of GPR 4 to the left by 5 bits, stores the result of ANDing the
rotated data with a generated mask in GPR 6, and sets Condition Register Field 0 to reflect the result
of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0005.
slw. 6,4,5
GPR 6 now contains 0x0086 0000.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srad (Shift Right Algebraic Double Word) Instruction

Purpose
Algebraically shift the contents of a general purpose register right by the number of bits specified by the
contents of another general purpose register. Place the result of the operation in another general purpose
register.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 794

31 Rc

POWER family
srad RA, RS, RB (Rc=0)
srad. RA, RS, RB (Rc=1)

Description
The contents of general purpose register (GPR) RS are shifted right the number of bits specified by the
low-order seven bits of GPR RB. Bits shifted out of position 63 are lost. Bit 0 of GPR RS is replicated to fill
the vacated positions on the left. The result is placed into GRP RA. XER[CA] is set if GPR RS is negative
and any 1 bits are shifted out of position 63; otherwise XER[CA] is cleared. A shift amount of zero causes
GRP RA to be set equal to GPR RS, and XER[CA] to be cleared. Shift amounts from 64 to 127 give a
result of 64 sign bits in GRP RA, and cause XER[CA] to receive the sign bit of GPR RS.

Note that the srad instruction, followed by addze, can by used to divide quickly by 2**n. The setting of the
CA bit, by srad, is independent of mode.

Other registers altered:

Chapter 8. Instruction Set 355

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

Parameters

RA Specifies target general-purpose register for the result of the operation.
RS Specifies source general-purpose register containing the operand for thr shift operation.
RB Specifies the distance to shift the operand.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

sradi (Shift Right Algebraic Double Word Immediate) Instruction

Purpose
Algebraically shift the contents of a general purpose register right by the number of bits specified by the
immediate value. Place the result of the operation in another general purpose register.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 sh

21-29 413

30 sh

31 Rc

POWER family
sradi RA, RS, SH (Rc=0)
sradi. RA, RS, SH (Rc=1)

Description
The contents of general purpose register (GPR) RS are shifted right SH bits. Bits shifted out of position 63
are lost. Bit 0 of GPR RS is replicated to fill the vacated positions on the left. The result is placed into
GPR RA. XER[CA] is set if GPR RS is negative and any 1 bits are shifted out of position 63; otherwise
XER[CA] is cleared. A shift amount of zero causes GPR RA to be set equal to GPR RS, and XER[CA] to
be cleared.

Note that the sradi instruction, followed by addze, can by used to divide quickly by 2**n. The setting of the
CA bit, by sradi, is independent of mode.

Other registers altered:

v Condition Register (CR0 field):

356 Assembler Language Reference

Affected: LT, GT, EQ, SO (if Rc = 1)

v XER:

Affected: CA

Parameters

RA Specifies target general-purpose register for the result of the operation.
RS Specifies source general-purpose register containing the operand for the shift operation.
SH Specifies shift value for operation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

sraiq (Shift Right Algebraic Immediate with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the
rotated data with a word of 32 sign bits from that general-purpose register under control of a generated
mask, and places the rotated word in the MQ Register and the merged result in another general-purpose
register.

Note: The sraiq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 952

31 Rc

POWER family
sraiq RA, RS, SH
sraiq. RA, RS, SH

Description
The sraiq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by
32 minus N bits, where N is the shift amount specified by SH, merges the rotated data with a word of 32
sign bits from GPR RS under control of a generated mask, and stores the rotated word in the MQ Register
and the merged result in GPR RA. A word of 32 sign bits is generated by taking the sign bit of a GPR and
repeating it 32 times to make a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF
depending on the value of the GPR. The mask consists of N zeros followed by 32 minus N ones.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs the 32-bit
result together, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

Chapter 8. Instruction Set 357

The sraiq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sraiq None CA 0 None

sraiq. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraiq instruction always affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field
0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies immediate value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x9000 3000.
sraiq 6,4,0x4
GPR 6 now contains 0xF900 0300.
MQ now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign
bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
sraiq. 6,4,0x4
GPR 6 now contains 0xFB00 4300.
MQ now contains 0x0B00 4300.
Condition Register Field 0 now contains 0x8.

Related Information
The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sraq (Shift Right Algebraic with MQ) Instruction

Purpose
Rotates a general-purpose register a specified number of bits to the left, merges the result with a word of
32 sign bits from that general-purpose register under control of a generated mask, and places the rotated
word in the MQ Register and the merged result in another general-purpose register.

Note: The sraq instruction is supported only in the POWER family architecture.

358 Assembler Language Reference

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 920

31 Rc

POWER family
sraq RA, RS, RB
sraq. RA, RS, RB

Description
The sraq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by
32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB. The instruction then
merges the rotated data with a word of 32 sign bits from GPR RS under control of a generated mask and
stores the merged word in GPR RA. The rotated word is stored in the MQ Register. The mask depends on
the value of bit 26 in GPR RB.

Consider the following when using the sraq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

A word of 32 sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make a full
word. This word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs the 32-bit
result together, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

The sraq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sraq None CA 0 None

sraq. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraq instruction always affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field
0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Chapter 8. Instruction Set 359

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the result in GPR 6 and the rotated word in the MQ
Register, and sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the
operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x0000 0024.
sraq 6,4,7
GPR 6 now contains 0xFFFF FFFF.
The MQ Register now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign
bits under control of a generated mask, places the result in GPR 6 and the rotated word in the MQ
Register, and sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to
reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x0000 0004.
sraq. 6,4,7
GPR 6 now contains 0xFB00 4300.
The MQ Register now contains 0x0B00 4300.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sraw or sra (Shift Right Algebraic Word) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the
rotated data with a word of 32 sign bits from that register under control of a generated mask, and places
the result in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 792

31 Rc

PowerPC
sraw RA, RS, RB
sraw. RA, RS, RB

POWER family
sra RA, RS, RB
sra. RA, RS, RB

360 Assembler Language Reference

Description
The sraw and sra instructions rotate the contents of the source general-purpose register (GPR) RS to the
left by 32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and merge the
rotated word with a word of 32 sign bits from GPR RS under control of a generated mask. A word of 32
sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make a full word. This
word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.

The mask depends on the value of bit 26 in GPR RB.

Consider the following when using the sraw and sra instructions:

v If bit 26 of GPR RB is zero, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is one, then a mask of all zeros is generated.

The merged word is placed in GPR RA. The sraw and sra instructions then AND the rotated data with the
complement of the generated mask, OR the 32-bit result together, and AND the bit result with bit 0 of GPR
RS to produce the Carry bit (CA).

The sraw and sra instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sraw None CA 0 None

sraw. None CA 1 LT,GT,EQ,SO

sra None CA 0 None

sra. None CA 1 LT,GT,EQ,SO

The two syntax forms of the sraw instruction, and the two syntax forms of the sra instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit
to 1, the instructions affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and
Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0024.
sraw 6,4,5
GPR 6 now contains 0xFFFF FFFF.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign
bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:

Chapter 8. Instruction Set 361

Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 0004.
sraw. 6,4,5
GPR 6 now contains 0xFB00 4300.
Condition Register Field 0 now contains 0x8.

Related Information
The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srawi or srai (Shift Right Algebraic Word Immediate) Instruction

Purpose
Rotates the contents of a general-purpose register a specified number of bits to the left, merges the
rotated data with a word of 32 sign bits from that register under control of a generated mask, and places
the result in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 824

31 Rc

PowerPC
srawi RA, RS, SH
srawi. RA, RS, SH

POWER family
srai RA, RS, SH
srai. RA, RS, SH

Description
The srawi and srai instructions rotate the contents of the source general-purpose register (GPR) RS to
the left by 32 minus N bits, where N is the shift amount specified by SH, merge the rotated data with a
word of 32 sign bits from GPR RS under control of a generated mask, and store the merged result in GPR
RA. A word of 32 sign bits is generated by taking the sign bit of a GPR and repeating it 32 times to make
a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF depending on the value of the GPR.
The mask consists of N zeros followed by 32 minus N ones.

The srawi and srai instructions then AND the rotated data with the complement of the generated mask,
OR the 32-bit result together, and AND the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

362 Assembler Language Reference

The srawi and srai instructions each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srawi None CA 0 None

srawi. None CA 1 LT,GT,EQ,SO

srai None CA 0 None

srai. None CA 1 LT,GT,EQ,SO

The two syntax forms of the srawi instruction, and the two syntax forms of the srai instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit
to 1, the instructions affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and
Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies immediate value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, stores the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0x9000 3000.
srawi 6,4,0x4
GPR 6 now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign
bits under control of a generated mask, places the result in GPR 6, and sets the Carry bit in the
Fixed-Point Exception Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
srawi. 6,4,0x4
GPR 6 now contains 0xFB00 4300.
Condition Register Field 0 now contains 0x8.

Related Information
The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srd (Shift Right Double Word) Instruction

Purpose
Shift the contents of a general purpose register right by the number of bits specified by the contents of
another general purpose register.

Chapter 8. Instruction Set 363

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 539

31 Rc

POWER family
srd RA, RS, RB (Rc=0)
srd. RA, RS, RB (Rc=1)

Description
The contents of general purpose register (GPR) RS are shifted right the number of bits specified by the
low-order seven bits of GPR RB. Bits shifted out of position 63 are lost. Zeros are supplied to the vacated
positions on the left. The result is placed into GRP RA. Shift amounts from 64 to 127 give a zero result.

Other registers altered:

v Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Parameters

RA Specifies target general-purpose register for the result of the operation.
RS Specifies source general-purpose register containing the operand for thr shift operation.
RB The low-order seven bits specify the distance to shift the operand.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

sre (Shift Right Extended) Instruction

Purpose
Shifts the contents of a general-purpose register to the right by a specified number of bits and places a
copy of the rotated data in the MQ Register and the result in a general-purpose register.

Note: The sre instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

364 Assembler Language Reference

Bits Value

16-20 RB

21-30 665

31 Rc

POWER family
sre RA, RS, RB
sre. RA, RS, RB

Description
The sre instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32
minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word
in the MQ Register and the logical AND of the rotated word and a generated mask in GPR RA. The mask
consists of N zeros followed by 32 minus N ones.

The sre instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sre None None 0 None

sre. None None 1 LT,GT,EQ,SO

The two syntax forms of the sre instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 20 bits, places a copy of the rotated

data in the MQ Register, and places the result of ANDing the rotated data with a mask into GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 000C.
sre 6,4,5
GPR 6 now contains 0x0009 0003.
The MQ Register now contains 0x0009 0003.

2. The following code rotates the contents of GPR 4 to the left by 17 bits, places a copy of the rotated
data in the MQ Register, places the result of ANDing the rotated data with a mask into GPR 6, and
sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 5 contains 0x0000 000F.
sre. 6,4,5
GPR 6 now contains 0x0001 6008.
The MQ Register now contains 0x6001 6008.
Condition Register Field 0 now contains 0x4.

Chapter 8. Instruction Set 365

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srea (Shift Right Extended Algebraic) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, places a copy
of the rotated data in the MQ Register, merges the rotated word and a word of 32 sign bits from the
general-purpose register under control of a mask, and places the result in another general-purpose
register.

Note: The srea instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 921

31 Rc

POWER family
srea RA, RS, RB
srea. RA, RS, RB

Description
The srea instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32
minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, stores the rotated word in the
MQ Register, and merges the rotated word and a word of 32 sign bits from GPR RS under control of a
generated mask. A word of 32 sign bits is generated by taking the sign bit of a general-purpose register
and repeating it 32 times to make a full word. This word can be either 0x0000 0000 or 0xFFFF FFFF
depending on the value of the general-purpose register. The mask consists of N zeros followed by 32
minus N ones. The merged word is stored in GPR RA.

This instruction then ANDs the rotated data with the complement of the generated mask, ORs together the
32-bit result, and ANDs the bit result with bit 0 of GPR RS to produce the Carry bit (CA).

The srea instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srea None CA 0 None

srea None CA 1 LT,GT,EQ,SO

366 Assembler Language Reference

The two syntax forms of the srea instruction always affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero,
Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field
0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign

bits under control of a generated mask, places the rotated word in the MQ Register and the result in
GPR 6, and sets the Carry bit in the Fixed-Point Exception Register to reflect the result of the
operation:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x0000 0004.
srea 6,4,7
GPR 6 now contains 0xF900 0300.
The MQ Register now contains 0x0900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the result with 32 sign
bits under control of a generated mask, places the rotated word in the MQ Register and the result in
GPR 6, and sets the Carry bit in the Fixed-Point Exception Register and Condition Register Field 0 to
reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x0000 0004.
srea. 6,4,7
GPR 6 now contains 0xFB00 4300.
The MQ Register now contains 0x0B00 4300.
Condition Register Field 0 now contains 0x8.

Related Information
The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sreq (Shift Right Extended with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the
result with the contents of the MQ Register under control of a generated mask, and places the rotated
word in the MQ Register and the merged result in another general-purpose register.

Note: The sreq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

Chapter 8. Instruction Set 367

Bits Value

11-15 RA

16-20 RB

21-30 729

31 Rc

POWER family
sreq RA, RS, RB
sreq. RA, RS, RB

Description
The sreq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by
32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, merges the rotated word
with the contents of the MQ Register under a generated mask, and stores the rotated word in the MQ
Register and the merged word in GPR RA. The mask consists of N zeros followed by 32 minus N ones.

The sreq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sreq None None 0 None

sreq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sreq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, and places the rotated word in the MQ
Register and the result in GPR 6:
Assume GPR 4 contains 0x9000 300F.
Assume GPR 7 contains 0x0000 0004.
Assume the MQ Register contains 0xEFFF FFFF.
sreq 6,4,7
GPR 6 now contains 0xE900 0300.
The MQ Register now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with
the contents of the MQ Register under a generated mask, places the rotated word in the MQ Register
and the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB00 300F.
Assume GPR 18 contains 0x0000 0004.
Assume the MQ Register contains 0xEFFF FFFF

368 Assembler Language Reference

sreq. 6,4,18
GPR 6 now contains 0xEB00 0300.
The MQ Register now contains 0xFB00 0300.
Condition Register Field 0 now contains 0x8.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

sriq (Shift Right Immediate with MQ) Instruction

Purpose
Shifts the contents of a general-purpose register to the right by a specified number of bits and places the
rotated contents in the MQ Register and the result in another general-purpose register.

Note: The sriq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 696

31 Rc

POWER family
sriq RA, RS, SH
sriq. RA, RS, SH

Description
The sriq instruction rotates the contents of the source general-purpose register (GPR) RS to the left 32
minus N bits, where N is the shift amount specified by SH, and stores the rotated word in the MQ
Register, and the logical AND of the rotated word and the generated mask in GPR RA. The mask consists
of N zeros followed by 32 minus N ones.

The sriq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

sriq None None 0 None

sriq. None None 1 LT,GT,EQ,SO

The two syntax forms of the sriq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Chapter 8. Instruction Set 369

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 20 bits, ANDs the rotated data with a

generated mask, and places the rotated word into the MQ Register and the result in GPR 6:
Assume GPR 4 contains 0x9000 300F.
sriq 6,4,0xC
GPR 6 now contains 0x0009 0003.
The MQ Register now contains 0x00F9 0003.

2. The following code rotates the contents of GPR 4 to the left by 12 bits, ANDs the rotated data with a
generated mask, places the rotated word into the MQ Register and the result in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB000 300F.
sriq. 6,4,0x14
GPR 6 now contains 0x0000 0B00.
The MQ Register now contains 0x0300 FB00.
Condition Register Field 0 now contains 0x4.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srliq (Shift Right Long Immediate with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges the
result with the contents of the MQ Register under control of a generated mask, and places the result in
another general-purpose register.

Note: The srliq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 SH

21-30 760

31 Rc

POWER family
srliq RA, RS, SH
srliq. RA, RS, SH

370 Assembler Language Reference

Description
The srliq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by
32 minus N bits, where N is the shift amount specified by SH, merges the result with the contents of the
MQ Register under control of a generated mask, and stores the rotated word in the MQ Register and the
merged result in GPR RA. The mask consists of N zeros followed by 32 minus N ones.

The srliq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srliq None None 0 None

srliq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srliq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
SH Specifies value for shift amount.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with

the contents of the MQ Register under a generated mask, and places the rotated word in the MQ
Register and the result in GPR 6:
Assume GPR 4 contains 0x9000 300F.
Assume the MQ Register contains 0x1111 1111.
srliq 6,4,0x4
GPR 6 now contains 0x1900 0300.
The MQ Register now contains 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with
the contents of the MQ Register under a generated mask, places the rotated word in the MQ Register
and the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000
Assume the MQ Register contains 0xFFFF FFFF.
srliq. 6,4,0x4
GPR 6 now contains 0xFB00 4300.
The MQ Register contains 0x0B00 4300.
Condition Register Field 0 now contains 0x8.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

Chapter 8. Instruction Set 371

srlq (Shift Right Long with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, merges either
the rotated data or a word of zeros with the contents of the MQ Register under control of a generated
mask, and places the result in a general-purpose register.

Note: The srlq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 728

31 Rc

POWER family
srlq RA, RS, RB
srlq. RA, RS, RB

Description
The srlq instruction rotates the contents of the source general-purpose register (GPR) RS to the left 32
minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB. The merge depends on the
value of bit 26 in GPR RB.

Consider the following when using the srlq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated. The
rotated word is then merged with the contents of the MQ Register under control of this generated mask.

v If bit 26 of GPR RB is 1, then a mask of N ones followed by 32 minus N zeros is generated. A word of
zeros is then merged with the contents of the MQ Register under control of this generated mask.

The merged word is stored in GPR RA. The MQ Register is not altered.

The srlq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srlq None None 0 None

srlq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srlq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

372 Assembler Language Reference

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, merges a word of zeros with

the contents of the MQ Register under a mask, and places the merged result in GPR 6:
Assume GPR 4 contains 0x9000 300F.
Assume GPR 8 contains 0x0000 0024.
Assume the MQ Register contains 0xFFFF FFFF.
srlq 6,4,8
GPR 6 now contains 0x0FFF FFFF.
The MQ Register remains unchanged.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, merges the rotated data with
the contents of the MQ Register under a mask, places the merged result in GPR 6, and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 8 contains 0x00000 0004.
Assume the MQ Register contains 0xFFFF FFFF.
srlq. 6,4,8
GPR 6 now holds 0xFB00 4300.
The MQ Register remains unchanged.
Condition Register Field 0 now contains 0x8.

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srq (Shift Right with MQ) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits, places the
rotated word in the MQ Register, and places the logical AND of the rotated word and a generated mask in
a general-purpose register.

Note: The srq instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 664

31 Rc

Chapter 8. Instruction Set 373

POWER family
srq RA, RS, RB
srq. RA, RS, RB

Description
The srq instruction rotates the contents of the source general-purpose register (GPR) RS to the left by 32
minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and stores the rotated word
in the MQ Register. The mask depends on bit 26 of GPR RB.

Consider the following when using the srq instruction:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 minus N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

This instruction then stores the logical AND of the rotated word and the generated mask in GPR RA.

The srq instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srq None None 0 None

srq. None None 1 LT,GT,EQ,SO

The two syntax forms of the srq instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits, places the rotated word in the

MQ Register, and places logical AND of the rotated word and the generated mask in GPR 6:
Assume GPR 4 holds 0x9000 300F.
Assume GPR 25 holds 0x0000 00024.
srq 6,4,25
GPR 6 now holds 0x0000 0000.
The MQ Register now holds 0xF900 0300.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, places the rotated word in the
MQ Register, places logical AND of the rotated word and the generated mask in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 holds 0xB000 300F.
Assume GPR 25 holds 0x0000 0004.
srq. 6,4,8
GPR 6 now holds 0x0B00 0300.
The MQ Register now holds 0xFB00 0300.
Condition Register Field 0 now contains 0x4.

374 Assembler Language Reference

Related Information
Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

srw or sr (Shift Right Word) Instruction

Purpose
Rotates the contents of a general-purpose register to the left by a specified number of bits and places the
masked result in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 536

31 Rc

PowerPC
srw RA, RS, RB
srw. RA, RS, RB

POWER family
sr RA, RS, RB
sr. RA, RS, RB

Description
The srw and sr instructions rotate the contents of the source general-purpose register (GPR) RS to the
left by 32 minus N bits, where N is the shift amount specified in bits 27-31 of GPR RB, and store the
logical AND of the rotated word and the generated mask in GPR RA.

Consider the following when using the srw and sr instructions:

v If bit 26 of GPR RB is 0, then a mask of N zeros followed by 32 - N ones is generated.

v If bit 26 of GPR RB is 1, then a mask of all zeros is generated.

The srw and sr instruction each have two syntax forms. Each syntax form has a different effect on
Condition Register Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

srw None None 0 None

srw. None None 1 LT,GT,EQ,SO

sr None None 0 None

sr. None None 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 375

The two syntax forms of the sr instruction, and the two syntax forms of the srw instruction, never affect
the Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, these instructions
affect the Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO)
bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code rotates the contents of GPR 4 to the left by 28 bits and stores the result of ANDing

the rotated data with a generated mask in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 5 contains 0x0000 0024.
srw 6,4,5
GPR 6 now contains 0x0000 0000.

2. The following code rotates the contents of GPR 4 to the left by 28 bits, stores the result of ANDing the
rotated data with a generated mask in GPR 6, and sets Condition Register Field 0 to reflect the result
of the operation:
Assume GPR 4 contains 0xB004 3001.
Assume GPR 5 contains 0x0000 0004.
srw. 6,4,5
GPR 6 now contains 0x0B00 4300.
Condition Register Field 0 now contains 0x4.

Related Information
The addze or aze (Add to Zero Extended) instruction.

Fixed-Point Processor .

Fixed-Point Rotate and Shift Instructions .

stb (Store Byte) Instruction

Purpose
Stores a byte of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 38

6-10 RS

11-15 RA

16-31 D

stb RS, D(RA)

376 Assembler Language Reference

Description
The stb instruction stores bits 24-31 of general-purpose register (GPR) RS into a byte of storage
addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stb instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores bits 24-31 of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 4 contains address of csect data[rw].
Assume GPR 6 contains 0x0000 0060.
.csect text[pr]
stb 6,buffer(4)
0x60 is now stored at the address of buffer.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stbu (Store Byte with Update) Instruction

Purpose
Stores a byte of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 39

6-10 RS

11-15 RA

16-31 D

stbu RS, D(RA)

Description
The stbu instruction stores bits 24-31 of the source general-purpose register (GPR) RS into the byte in
storage addressed by the effective address (EA).

Chapter 8. Instruction Set 377

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If RA does not equal 0 and the storage access does not cause an Alignment Interrupt, then the EA is
stored in GPR RA.

The stbu instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code stores bits 24-31 of GPR 6 into a location in memory and places the address in GPR
16:
.csect data[rw]
buffer: .long 0
Assume GPR 6 contains 0x0000 0060.
Assume GPR 16 contains the address of csect data[rw].
.csect text[pr]
stbu 6,buffer(16)
GPR 16 now contains the address of buffer.
0x60 is stored at the address of buffer.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stbux (Store Byte with Update Indexed) Instruction

Purpose
Stores a byte of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 247

31 /

stbux RS, RA, RB

378 Assembler Language Reference

Description
The stbux instruction stores bits 24-31 of the source general-purpose register (GPR) RS into the byte in
storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If RA is 0,
then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt, then the EA is
stored in GPR RA.

The stbux instruction exists only in one syntax form and does not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of GPR 6 into a location in memory and places the address in GPR
4:
.csect data[rw]
buffer: .long 0
Assume GPR 6 contains 0x0000 0060.
Assume GPR 4 conteains 0x0000 0000.
Assume GPR 19 contains the address of buffer.
.csect text[pr]
stbux 6,4,19
Buffer now contains 0x60.
GPR 4 contains the address of buffer.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stbx (Store Byte Indexed) Instruction

Purpose
Stores a byte from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 215

31 /

Chapter 8. Instruction Set 379

stbx RS, RA, RB

Description
The stbx instruction stores bits 24-31 from general-purpose register (GPR) RS into a byte of storage
addressed by the effective address (EA). The contents of GPR RS are unchanged.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If GPR
RA is 0, then the EA is the contents of GPR RB.

The stbx instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores bits 24-31 of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains 0x4865 6C6F.
.csect text[pr]
stbx 6,0,4
buffer now contains 0x6F.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

std (Store Double Word) Instruction

Purpose
Store a double-word of data from a general purpose register into a specified memory location.

Syntax

Bits Value

0-5 62

6-10 S

11-15 A

16-29 ds

30-31 00

POWER family
std RS, D(RA)

380 Assembler Language Reference

Description
The std instruction stores a double-word in storage from the source general-purpose register (GPR) RS
into the specified location in memory referenced by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

Parameters

RS Specifies the source general-purpose register containing data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

stdcx. (Store Double Word Conditional Indexed) Instruction

Purpose
Conditionally store the contents of a general purpose register into a storage location, based upon an
existing reservation.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 214

31 1

POWER family
stdcx. RS, RA, RB

Description
If a reservation exists, and the memory address specified by the stdcx. instruction is the same as that
specified by the load and reserve instruction that established the reservation, the contents of RS are
stored into the double-word in memory addressed by the effective address (EA); the reservation is cleared.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits. If GPR RA is 0, then the EA is D.

If a reservation exists, but the memory address specified by the stdcx. instruction is not the same as that
specified by the load and reserve instruction that established the reservation, the reservation is cleared,
and it is undefined whether the contents of RS are stored into the double word in memory addressed by
the EA.

Chapter 8. Instruction Set 381

If no reservation exists, the instruction completes without altering memory.

If the store is performed successfully, bits 0-2 of Condition Register Field 0 are set to 0b001, otherwise,
they are set to 0b000. The SO bit of the XER is copied to to bit 4 of Condition Register Field 0.

The EA must be a multiple of eight. If it is not, either the system alignment exception handler is invoked or
the results are boundedly undefined.

Note that, when used correctly, the load and reserve and store conditional instructions can provide an
atomic update function for a single aligned word (load word and reserve and store word conditional) or
double word (load double word and reserve and store double word conditional) of memory.

In general, correct use requires that load word and reserve be paired with store word conditional, and load
double word and reserve with store double word conditional, with the same memory address specified by
both instructions of the pair. The only exception is that an unpaired store word conditional or store double
word conditional instruction to any (scratch) EA can be used to clear any reservation held by the
processor.

A reservation is cleared if any of the following events occurs:

v The processor holding the reservation executes another load and reserve instruction; this clears the first
reservation and establishes a new one.

v The processor holding the reservation executes a store conditional instruction to any address.

v Another processor executes any store instruction to the address associated with the reservation

v Any mechanism, other than the processor holding the reservation, stores to the address associated with
the reservation.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

stdu (Store Double Word with Update) Instruction

Purpose
Store a double-word of data from a general purpose register into a specified memory location. Update the
address base.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 62

6-10 S

11-15 A

16-29 ds

382 Assembler Language Reference

Bits Value

30-31 01

PowerPC64
stdu RS, D (RA)

Description
The stdu instruction stores a double-word in storage from the source general-purpose register (GPR) RS
into the specified location in memory referenced by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit, signed two’s
complement integer, fullword-aligned, sign-extended to 64 bits. GRP RA is updated with the EA.

If GPR RA = 0, the instruction form is invalid.

Parameters

RS Specifies the source general-purpose register containing data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stdux (Store Double Word with Update Indexed) Instruction

Purpose
Store a double-word of data from a general purpose register into a specified memory location. Update the
address base.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 181

31 0

Chapter 8. Instruction Set 383

POWER family
stdux RS, RA, RB

Description
The stdux instruction stores a double-word in storage from the source general-purpose register (GPR) RS
into the location in storage specified by the effective address (EA).

The EA is the sum of the contents of GPR RA and RB. GRP RA is updated with the EA.

If rA = 0, the instruction form is invalid.

Parameters

RS Specifies the source general-purpose register containing data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

stdx (Store Double Word Indexed) Instruction

Purpose
Store a double-word of data from a general purpose register into a specified memory location.

Syntax

Bits Value

0-5 31

6-10 S

11-15 A

16-20 B

21-30 149

31 0

POWER family
stdx RS, RA, RB

Description
The stdx instruction stores a double-word in storage from the source general-purpose register (GPR) RS
into the location in storage specified by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and RB. If GPR RA is 0, then the EA is
RB.

384 Assembler Language Reference

Parameters

RS Specifies the source general-purpose register containing data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

stfd (Store Floating-Point Double) Instruction

Purpose
Stores a doubleword of data in a specified location in memory.

Syntax

Bits Value

0-5 54

6-10 FRS

11-15 RA

16-31 D

stfd FRS, D(RA)

Description
The stfd instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage
addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D. The
sum is a 16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is
D.

The stfd instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies source floating-point register of stored data.
D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of FPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0,0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.

Chapter 8. Instruction Set 385

Assume GPR 4 contains the address of csect data[rw].
.csect text[pr]
stfd 6,buffer(4)
buffer now contains 0x4865 6C6C 6F20 776F.

Related Reading
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdu (Store Floating-Point Double with Update) Instruction

Purpose
Stores a doubleword of data in a specified location in memory and in some cases places the address in a
general-purpose register.

Syntax

Bits Value

0-5 55

6-10 FRS

11-15 RA

16-31 D

stfdu FRS, D(RA)

Description
The stfdu instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage
addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D. The
sum is a 16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is
D.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or a Data Storage
Interrupt, then the EA is stored in GPR RA.

The stfdu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies source floating-point register of stored data.
D Specifies a 16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code stores the doubleword contents of FPR 6 into a location in memory and stores the
address in GPR 4:

386 Assembler Language Reference

.csect data[rw]
buffer: .long 0,0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
GPR 4 contains the address of csect data[rw].
.csect text[pr]
stfdu 6,buffer(4)
buffer now contains 0x4865 6C6C 6F20 776F.
GPR 4 now contains the address of buffer.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdux (Store Floating-Point Double with Update Indexed) Instruction

Purpose
Stores a doubleword of data in a specified location in memory and in some cases places the address in a
general-purpose register.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 759

31 /

stfdux FRS, RA, RB

Description
The stfdux instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage
addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If
GPR RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or a Data Storage
Interrupt, then the EA is stored in GPR RA.

The stfdux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies source floating-point register of stored data.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Chapter 8. Instruction Set 387

Examples
The following code stores the contents of FPR 6 into a location in memory and stores the address in GPR
4:
.csect data[rw]
buffer: .long 0,0,0,0
Assume FPR 6 contains 0x9000 3000 9000 3000.
Assume GPR 4 contains 0x0000 0008.
Assume GPR 5 contains the address of buffer.
.csect text[pr]
stfdux 6,4,5
buffer+8 now contains 0x9000 3000 9000 3000.
GPR 4 now contains the address of buffer+8.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfdx (Store Floating-Point Double Indexed) Instruction

Purpose
Stores a doubleword of data in a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 727

31 /

stfdx FRS, RA, RB

Description
The stfdx instruction stores the contents of floating-point register (FPR) FRS into the doubleword storage
addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If
GPR RA is 0, then the EA is the contents of GPR RB.

The stfdx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies source floating-point register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

388 Assembler Language Reference

Examples
The following code stores the contents of FPR 6 into a location in memory addressed by GPR 5 and GPR
4:
.csect data[rw]
buffer: .long 0,0,0,0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
Assume GPR 4 contains 0x0000 0008.
Assume GPR 5 contains the address of buffer.
.csect text[pr]
stfdx 6,4,5
0x4865 6C6C 6F20 776F is now stored at the
address buffer+8.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfiwx (Store Floating-Point as Integer Word Indexed)

Purpose
Stores the low-order 32 bits from a specified floating point register in a specified word location in memory.

Note: The stfiwx instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 603 RISC Microprocessor and the PowerPC 604 RISC
Microprocessor, but not on the PowerPC 601 RISC Microprocessor.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 983

31 /

stfiwx FRS, RA, RB

Description
The stfifx instruction stores the contents of the low-order 32 bits of floating-point register (FPR)
FRS,without conversion, into the word storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPRs RA and RB. If
GPR RA is 0, then the EA is the contents of GPR RB.

The stfiwx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

If the contents of register FRS was produced, either directly or indirectly by a Load Floating Point Single
Instruction, a single-precision arithmetic instruction, or the frsp (Floating Round to Single Precision)

Chapter 8. Instruction Set 389

instruction, then the value stored is undefined. (The contents of FRS is produced directly by such an
instruction if FRS is the target register of such an instruction. The contents of register FRS is produced
indirectly by such an instruction if FRS is the final target register of a sequence of one or more Floating
Point Move Instructions, and the input of the sequence was produced directly by such an instruction.)

Parameters

FRS Specifies source floating-point register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of FPR 6 into a location in memory addressed by GPR 5 and GPR
4:
.csect data[rw]
buffer: .long 0,0,0,0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
Assume GPR 4 contains 0x0000 0008.
Assume GPR 5 contains the address of buffer.
.csect text[pr]
stfiwx 6,4,5
6F20 776F is now stored at the
address buffer+8.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfq (Store Floating-Point Quad) Instruction

Purpose
Stores in memory two double-precision values at two consecutive doubleword locations.

Note: The stfq instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 60

6-10 FRS

11-15 RA

16-29 DS

30-31 00

POWER2
stfq FRS, DS(RA)

390 Assembler Language Reference

Description
The stfq instruction stores in memory the contents of two consecutive floating-point registers (FPR) at the
location specified by the effective address (EA).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The contents of FPR FRS is stored into the doubleword of storage
at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the doubleword at EA+8; otherwise,
the contents of FRS+1 are stored into the doubleword at EA+8.

The stfq instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies the first of two floating-point registers that contain the values to be stored.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for the EA calculation.

Related Information
The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqu (Store Floating-Point Quad with Update) Instruction

Purpose
Stores in memory two double-precision values at two consecutive doubleword locations and updates the
address base.

Note: The stfqu instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 61

6-10 FRS

11-15 RA

16-29 DS

30-31 01

POWER2
stfqu FRS, DS(RA)

Chapter 8. Instruction Set 391

Description
The stfqu instruction stores in memory the contents of two consecutive floating-point registers (FPR) at
the location specified by the effective address (EA).

DS is sign-extended to 30 bits and concatenated on the right with b’00’ to form the offset value. If
general-purpose register (GPR) RA is 0, the offset value is the EA. If GPR RA is not 0, the offset value is
added to GPR RA to generate the EA. The contents of FPR FRS is stored into the doubleword of storage
at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the doubleword at EA+8; otherwise,
the contents of FRS+1 is stored into the doubleword at EA+8.

If GPR RA is not 0, the EA is placed into GPR RA.

The stfqu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies the first of two floating-point registers that contain the values to be stored.
DS Specifies a 14-bit field used as an immediate value for the EA calculation.
RA Specifies one source general-purpose register for the EA calculation and the target register for the EA update.

Related Information
The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqux (Store Floating-Point Quad with Update Indexed) Instruction

Purpose
Stores in memory two double-precision values at two consecutive doubleword locations and updates the
address base.

Note: The stfqux instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 951

31 Rc

POWER2
stfqux FRS, RA, RB

392 Assembler Language Reference

Description
The stfqux instruction stores in memory the contents of two consecutive floating-point registers (FPR) at
the location specified by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The contents of FPR FRS is stored into the
doubleword of storage at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the
doubleword at EA+8; otherwise, the contents of FRS+1 is stored into the doubleword at EA+8.

If GPR RA is not 0, the EA is placed into GPR RA.

The stfqux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies the first of two floating-point registers that contain the values to be stored.
RA Specifies the first source general-purpose register for the EA calculation and the target register for the EA

update.
RB Specifies the second source general-purpose register for the EA calculation.

Related Information
The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfqx (Store Floating-Point Quad Indexed) Instruction

Purpose
Stores in memory two double-precision values at two consecutive doubleword locations.

Note: The stfqx instruction is supported only in the POWER2 implementation of the POWER family
architecture.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 919

31 Rc

POWER2
stfqx FRS, RA, RB

Chapter 8. Instruction Set 393

Description
The stfqx instruction stores in memory the contents of floating-point register (FPR) FRS at the location
specified by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, the EA is the contents of GPR RB. The contents of FPR FRS is stored into the
doubleword of storage at the EA. If FPR FRS is 31, then the contents of FPR 0 is stored into the
doubleword at EA+8; otherwise, the contents of FRS+1 is stored into the doubleword at EA+8.

The stfqx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies the first of two floating-point registers that contain the values to be stored.
RA Specifies one source general-purpose register for the EA calculation.
RB Specifies the second source general-purpose register for the EA calculation.

Related Information
The lfqux (Load Floating-Point Quad with Update Indexed) instruction.

Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfs (Store Floating-Point Single) Instruction

Purpose
Stores a word of data from a floating-point register into a specified location in memory.

Syntax

Bits Value

0-5 52

6-10 FRS

11-15 RA

16-31 D

stfs FRS, D(RA)

Description
The stfs instruction converts the contents of floating-point register (FPR) FRS to single-precision and
stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a
16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stfs instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

394 Assembler Language Reference

Parameters

FRS Specifies floating-point register of stored data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores the single-precision contents of FPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of csect data[rw].
.csect text[pr]
stfs 6,buffer(4)
buffer now contains 0x432B 6363.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsu (Store Floating-Point Single with Update) Instruction

Purpose
Stores a word of data from a floating-point register into a specified location in memory and possibly places
the address in a general-purpose register.

Syntax

Bits Value

0-5 53

6-10 FRS

11-15 RA

16-31 D

stfsu FRS, D(RA)

Description
The stfsu instruction converts the contents of floating-point register (FPR) FRS to single-precision and
stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and D, a
16-bit signed two’s complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or Data Storage
Interrupt, then the EA is stored in GPR RA.

The stfsu instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Chapter 8. Instruction Set 395

Parameters

FRS Specifies floating-point register of stored data.
D Specifies a 16-bit, signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code stores the single-precision contents of FPR 6 into a location in memory and stores the
address in GPR 4:
.csect data[rw]
buffer: .long 0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of csect data[rw].
.csect text[pr]
stfsu 6,buffer(4)
GPR 4 now contains the address of buffer.
buffer now contains 0x432B 6363.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsux (Store Floating-Point Single with Update Indexed) Instruction

Purpose
Stores a word of data from a floating-point register into a specified location in memory and possibly places
the address in a general-purpose register.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 695

31 /

stfsux FRS, RA, RB

Description
The stfsux instruction converts the contents of floating-point register (FPR) FRS to single-precision and
stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, then the EA is the contents of GPR RB.

If GPR RA does not equal 0 and the storage access does not cause Alignment Interrupt or Data Storage
Interrupt, then the EA is stored in GPR RA.

396 Assembler Language Reference

The stfsux instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies floating-point register of stored data.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the single-precision contents of FPR 6 into a location in memory and stores the
address in GPR 5:
.csect data[rw]
buffer: .long 0,0,0,0
Assume GPR 4 contains 0x0000 0008.
Assume GPR 5 contains the address of buffer.
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
.csect text[pr]
stfsux 6,5,4
GPR 5 now contains the address of buffer+8.
buffer+8 contains 0x432B 6363.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

stfsx (Store Floating-Point Single Indexed) Instruction

Purpose
Stores a word of data from a floating-point register into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 FRS

11-15 RA

16-20 RB

21-30 663

31 /

stfsx FRS, RA, RB

Description
The stfsx instruction converts the contents of floating-point register (FPR) FRS to single-precision and
stores the result into the word of storage addressed by the effective address (EA).

If general-purpose register (GPR) RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB.
If GPR RA is 0, then the EA is the contents of GPR RB.

Chapter 8. Instruction Set 397

The stfsx instruction has one syntax form and does not affect the Floating-Point Status and Control
Register or Condition Register Field 0.

Parameters

FRS Specifies source floating-point register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the single-precision contents of FPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume FPR 6 contains 0x4865 6C6C 6F20 776F.
Assume GPR 4 contains the address of buffer.
.csect text[pr]
stfsx 6,0,4
buffer now contains 0x432B 6363.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

sth (Store Half) Instruction

Purpose
Stores a halfword of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 44

6-10 RS

11-15 RA

16-31 D

sth RS, D(RA)

Description
The sth instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage
addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The sth instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

398 Assembler Language Reference

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores bits 16-31 of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 6 contains 0x9000 3000.
.csect text[pr]
sth 6,buffer(4)
buffer now contains 0x3000.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

sthbrx (Store Half Byte-Reverse Indexed) Instruction

Purpose
Stores a halfword of data from a general-purpose register into a specified location in memory with the two
bytes reversed.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 918

31 /

sthbrx RS, RA, RB

Description
The sthbrx instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage
addressed by the effective address (EA).

Consider the following when using the sthbrx instruction:

v Bits 24-31 of GPR RS are stored into bits 00-07 of the halfword in storage addressed by EA.

v Bits 16-23 of GPR RS are stored into bits 08-15 of the word in storage addressed by EA.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

Chapter 8. Instruction Set 399

The sthbrx instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the halfword contents of GPR 6 with the bytes reversed into a location in
memory:
.csect data[rw]
buffer: .long 0
Assume GPR 6 contains 0x9000 3456.
Assume GPR 4 contains the address of buffer.
.csect text[pr]
sthbrx 6,0,4
buffer now contains 0x5634.

Related Information
Floating-Point Processor .

Floating-Point Load and Store Instructions .

sthu (Store Half with Update) Instruction

Purpose
Stores a halfword of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 45

6-10 RS

11-15 RA

16-31 D

sthu RS, D(RA)

Description
The sthu instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage
addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a Data
Storage Interrupt, then the EA is placed into GPR RA.

400 Assembler Language Reference

The sthu instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code stores the halfword contents of GPR 6 into a memory location and stores the address
in GPR 4:
.csect data[rw]
buffer: .long 0
Assume GPR 6 contains 0x9000 3456.
Assume GPR 4 contains the address of csect data[rw].
.csect text[pr]
sthu 6,buffer(4)
buffer now contains 0x3456
GPR 4 contains the address of buffer.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

sthux (Store Half with Update Indexed) Instruction

Purpose
Stores a halfword of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 439

31 /

sthux RS, RA, RB

Description
The sthux instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage
addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

Chapter 8. Instruction Set 401

If GPR RA does not equal 0 and the storage access does not cause an Alignment Interrupt or a Data
Storage Interrupt, then the EA is placed into register GPR RA.

The sthux instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the halfword contents of GPR 6 into a memory location and stores the address
in GPR 4:
.csect data[rw]
buffer: .long 0,0,0,0
Assume GPR 6 contains 0x9000 3456.
Assume GPR 4 contains 0x0000 0007.
Assume GPR 5 contains the address of buffer.
.csect text[pr]
sthux 6,4,5
buffer+0x07 contains 0x3456.
GPR 4 contains the address of buffer+0x07.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

sthx (Store Half Indexed) Instruction

Purpose
Stores a halfword of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 407

31 /

sthx RS, RA, RB

Description
The sthx instruction stores bits 16-31 of general-purpose register (GPR) RS into the halfword of storage
addressed by the effective address (EA).

402 Assembler Language Reference

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The sthx instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores halfword contents of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 6 contains 0x9000 3456.
Assume GPR 5 contains the address of buffer.
.csect text[pr]
sthx 6,0,5
buffer now contains 0x3456.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stmw or stm (Store Multiple Word) Instruction

Purpose
Stores the contents of consecutive registers into a specified memory location.

Syntax

Bits Value

0-5 47

6-10 RT

11-15 RA

16-31 D

PowerPC
stmw RS, D(RA)

POWER family
stm RS, D(RA)

Description
The stmw and stm instructions store N consecutive words from general-purpose register (GPR) RS
through GPR 31. Storage starts at the effective address (EA). N is a register number equal to 32 minus
RS.

Chapter 8. Instruction Set 403

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D. The sum is a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stmw instruction has one syntax form. If the EA is not a multiple of 4, the results are boundedly
undefined.

The stm instruction has one syntax form and does not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a 16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of GPR 29 through GPR 31 into a location in memory:
.csect data[rw]
buffer: .long 0,0,0
Assume GPR 29 contains 0x1000 2200.
Assume GPR 30 contains 0x1000 3300.
Assume GPR 31 contains 0x1000 4400.
.csect text[pr]
stmw 29,buffer(4)
Three consecutive words in storage beginning at the address
of buffer are now 0x1000 2200 1000 3300 1000 4400.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stswi or stsi (Store String Word Immediate) Instruction

Purpose
Stores consecutive bytes from consecutive registers into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 NB

21-30 725

31 /

PowerPC
stswi RS, RA, NB

404 Assembler Language Reference

POWER family
stsi RS, RA, NB

Description
The stswi and stsi instructions store N consecutive bytes starting with the leftmost byte in
general-purpose register (GPR) RS at the effective address (EA) from GPR RS through GPR RS + NR - 1.

If GPR RA is not 0, the EA is the contents of GPR RA. If RA is 0, then the EA is 0.

Consider the following when using the stswi and stsi instructions:

v NB is the byte count.

v RS is the starting register.

v N is NB, which is the number of bytes to store. If NB is 0, then N is 32.

v NR is ceiling(N/4), which is the number of registers to store data from.

For the POWER family instruction stsi, the contents of the MQ Register are undefined.

The stswi and stsi instructions have one syntax form and do not affect the Fixed-Point Exception Register
or Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
NB Specifies byte count for EA calculation.

Examples
The following code stores the bytes contained in GPR 6 to GPR 8 into a location in memory:
.csect data[rw]
buffer: .long 0,0,0
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains 0x4865 6C6C.
Assume GPR 7 contains 0x6F20 776F.
Assume GPR 8 contains 0x726C 6421.
.csect text[pr]
stswi 6,4,12
buffer now contains 0x4865 6C6C 6F20 776F 726C 6421.

Related Information
Fixed-Point Processor .

Fixed-Point String Instructions .

stswx or stsx (Store String Word Indexed) Instruction

Purpose
Stores consecutive bytes from consecutive registers into a specified location in memory.

Chapter 8. Instruction Set 405

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 661

31 /

PowerPC
stswx RS, RA, RB

POWER family
stsx RS, RA, RB

Description
The stswx and stsx instructions store N consecutive bytes starting with the leftmost byte in register RS at
the effective address (EA) from general-purpose register (GPR) RS through GPR RS + NR - 1.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and the contents of GPR RB. If GPR
RA is 0, then EA is the contents of GPR RB.

Consider the following when using the stswx and stsx instructions:

v XER25-31 contain the byte count.

v RS is the starting register.

v N is XER25-31, which is the number of bytes to store.

v NR is ceiling(N/4), which is the number of registers to store data from.

For the POWER family instruction stsx, the contents of the MQ Register are undefined.

The stswx and stsx instructions have one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the bytes contained in GPR 6 to GPR 7 into the specified bytes of a location in
memory:
.csect data[rw]
buffer: .long 0,0,0
Assume GPR 5 contains 0x0000 0007.
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains 0x4865 6C6C.
Assume GPR 7 contains 0x6F20 776F.

406 Assembler Language Reference

The Fixed-Point Exception Register bits 25-31 contain 6.
.csect text[pr]
stswx 6,4,5
buffer+0x7 now contains 0x4865 6C6C 6F20.

Related Information
Fixed-Point Processor .

Fixed-Point String Instructions .

stw or st (Store) Instruction

Purpose
Stores a word of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 36

6-10 RS

11-15 RA

16-31 D

PowerPC
stw RS, D(RA)

POWER family
st RS, D(RA)

Description
The stw and st instructions store a word from general-purpose register (GPR) RS into a word of storage
addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

The stw and st instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
D Specifies a16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0,0
Assume GPR 6 contains 0x9000 3000.

Chapter 8. Instruction Set 407

Assume GPR 5 contains the address of buffer.
.csect text[pr]
stw 6,4(5)
0x9000 3000 is now stored at the address buffer+4.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction

Purpose
Stores a byte-reversed word of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 662

31 /

PowerPC
stwbrx RS, RA, RB

POWER family
stbrx RS, RA, RB

Description
The stwbrx and stbrx instructions store a byte-reversed word from general-purpose register (GPR) RS
into a word of storage addressed by the effective address (EA).

Consider the following when using the stwbrx and stbrx instructions:

v Bits 24-31 of GPR RS are stored into bits 00-07 of the word in storage addressed by EA.

v Bits 16-23 of GPR RS are stored into bits 08-15 of the word in storage addressed by EA.

v Bits 08-15 of GPR RS are stored into bits 16-23 of the word in storage addressed by EA.

v Bits 00-07 of GPR RS are stored into bits 24-31 of the word in storage addressed by EA.

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The stwbrx and stbrx instructions have one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

408 Assembler Language Reference

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores a byte-reverse word from GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of buffer.
Assume GPR 9 contains 0x0000 0000.
Assume GPR 6 contains 0x1234 5678.
.csect text[pr]
stwbrx 6,4,9
0x7856 3412 is now stored at the address of buffer.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

stwcx. (Store Word Conditional Indexed) Instruction

Purpose
Used in conjunction with a preceding lwarx instruction to emulate a read-modify-write operation on a
specified memory location.

Note: The stwcx. instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 150

31 1

PowerPC
stwcx. RS, RA, RB

Description
The stwcx. and lwarx instructions are primitive, or simple, instructions used to perform a read-modify-write
operation to storage. If the store is performed, the use of the stwcx. and lwarx instructions ensures that
no other processor or mechanism has modified the target memory location between the time the lwarx
instruction is executed and the time the stwcx. instruction completes.

Consider the following when using the stwcx. instruction:

Chapter 8. Instruction Set 409

v If general-purpose register (GPR) RA is 0, the effective address (EA) is the content of GPR RB,
otherwise EA is the sum of the content of GPR RA plus the content of GPR RB.

v If the reservation created by a lwarx instruction exists, the content of GPR RS is stored into the word in
storage and addressed by EA and the reservation is cleared. Otherwise, the storage is not altered.

v If the store is performed, bits 0-2 of Condition Register Field 0 are set to 0b001, otherwise, they are set
to 0b000. The SO bit of the XER is copied to to bit 4 of Condition Register Field 0.

The stwcx instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
EA is not a multiple of 4, the results are boundedly undefined.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code performs a ″Fetch and Store″ by atomically loading and replacing a word in

storage:
Assume that GPR 4 contains the new value to be stored.
Assume that GPR 3 contains the address of the word
to be loaded and replaced.
loop: lwarx r5,0,r3 # Load and reserve

stwcx. r4,0,r3 # Store new value if still
reserved

bne- loop # Loop if lost reservation
The new value is now in storage.
The old value is returned to GPR 4.

2. The following code performs a ″Compare and Swap″ by atomically comparing a value in a register with
a word in storage:
Assume that GPR 5 contains the new value to be stored after
a successful match.
Assume that GPR 3 contains the address of the word
to be tested.
Assume that GPR 4 contains the value to be compared against
the value in memory.
loop: lwarxr 6,0,r3 # Load and reserve

cmpw r4,r6 # Are the first two operands
equal?

bne- exit # Skip if not equal
stwcx. r5,0,r3 # Store new value if still

reserved
bne- loop # Loop if lost reservation

exit: mrr 4,r6 # Return value from storage
The old value is returned to GPR 4.
If a match was made, storage contains the new value.

If the value in the register equals the word in storage, the value from a second register is stored in the
word in storage. If they are unequal, the word from storage is loaded into the first register and the EQ
bit of the Condition Register Field 0 is set to indicate the result of the comparison.

Related Information
The lwarx (Load Word and Reserve Indexed) instruction.

Processing and Storage

410 Assembler Language Reference

stwu or stu (Store Word with Update) Instruction

Purpose
Stores a word of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 37

6-10 RS

11-15 RA

16-31 D

PowerPC
stwu RS, D(RA)

POWER family
stu RS, D(RA)

Description
The stwu and stu instructions store the contents of general-purpose register (GPR) RS into the word of
storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and D, a 16-bit signed two’s
complement integer sign-extended to 32 bits. If GPR RA is 0, then the EA is D.

If GPR RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data Storage
Interrupt, then EA is placed into GPR RA.

The stwu and stu instructions have one syntax form and do not affect the Fixed-Point Exception Register
or Condition Register Field 0.

Parameters

RS Specifies general-purpose register of stored data.
D Specifies16-bit signed two’s complement integer sign-extended to 32 bits for EA calculation.
RA Specifies source general-purpose register for EA calculation and possible address update.

Examples
The following code stores the contents of GPR 6 into a location in memory:
.csect data[rw]
buffer: .long 0
Assume GPR 4 contains the address of csect data[rw].
Assume GPR 6 contains 0x9000 3000.
.csect text[pr]
stwu 6,buffer(4)
buffer now contains 0x9000 3000.
GPR 4 contains the address of buffer.

Chapter 8. Instruction Set 411

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stwux or stux (Store Word with Update Indexed) Instruction

Purpose
Stores a word of data from a general-purpose register into a specified location in memory and possibly
places the address in another general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

212-30 183

31 /

PowerPC
stwux RS, RA, RB

POWER family
stux RS, RA, RB

Description
The stwux and stux instructions store the contents of general-purpose register (GPR) RS into the word of
storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

If GPR RA is not 0 and the storage access does not cause an Alignment Interrupt or a Data Storage
Interrupt, then the EA is placed into GPR RA.

The stwux and stux instructions have one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation and possible address update.
RB Specifies source general-purpose register for EA calculation.

Examples
The following code stores the contents of GPR 6 into a location in memory:

412 Assembler Language Reference

.csect data[rw]
buffer: .long 0,0
Assume GPR 4 contains 0x0000 0004.
Assume GPR 23 contains the address of buffer.
Assume GPR 6 contains 0x9000 3000.
.csect text[pr]
stwux 6,4,23
buffer+4 now contains 0x9000 3000.
GPR 4 now contains the address of buffer+4.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store with Update Instructions .

stwx or stx (Store Word Indexed) Instruction

Purpose
Stores a word of data from a general-purpose register into a specified location in memory.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 151

31 /

PowerPC
stwx RS, RA, RB

POWER family
stx RS, RA, RB

Description
The stwx and stx instructions store the contents of general-purpose register (GPR) RS into the word of
storage addressed by the effective address (EA).

If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, then the
EA is the contents of GPR RB.

The stwx and stx instructions have one syntax form and do not affect the Fixed-Point Exception Register
or Condition Register Field 0.

Parameters

RS Specifies source general-purpose register of stored data.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Chapter 8. Instruction Set 413

Examples
The following code stores the contents of GPR 6 into a location in memory:
.csect data[pr]
buffer: .long 0
Assume GPR 4 contains the address of buffer.
Assume GPR 6 contains 0x4865 6C6C.
.csect text[pr]
stwx 6,0,4
Buffer now contains 0x4865 6C6C.

Related Information
Fixed-Point Processor .

Fixed-Point Load and Store Instructions .

subf (Subtract From) Instruction

Purpose
Subtracts the contents of two general-purpose registers and places the result in a third general-purpose
register.

Note: The subf instruction is supported only in the PowerPC architecture.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 40

31 Rc

PowerPC
subf RT, RA, RB
subf. RT, RA, RB
subfo RT, RA, RB
subfo. RT, RA, RB

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description
The subf instruction adds the ones complement of the contents of general-purpose register (GPR) RA and
1 to the contents of GPR RB and stores the result in the target GPR RT.

The subf instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

414 Assembler Language Reference

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

subf 0 None 0 None

subf. 0 None 1 LT,GT,EQ,SO

subfo 1 SO,OV,CA 0 None

subfo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subf instruction never affect the Carry bit (CA) in the Fixed-Point Exception
Register. If the syntax form sets the Overflow Exception (OE) bit to 1, the instruction affects the Summary
Overflow (SO) and Overflow (OV) bits in the Fixed-Point Exception Register. If the syntax form sets the
Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero, Equal To
(EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for EA calculation.
RB Specifies source general-purpose register for EA calculation.

Examples
1. The following code subtracts the contents of GPR 4 from the contents of GPR 10, and stores the result

in GPR 6:
Assume GPR 4 contains 0x8000 7000.
Assume GPR 10 contains 0x9000 3000.
subf 6,4,10
GPR 6 now contains 0x0FFF C000.

2. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets Condition Register Field 0:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
subf. 6,4,10
GPR 6 now contains 0x8000 2B00.

3. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register to
reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0x0000 4500.
subfo 6,4,10
GPR 6 now contains 0x8000 4500.

4. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow and Overflow bits in the Fixed-Point Exception Register and
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0x0000 7000.
subfo. 6,4,10
GPR 6 now contains 0x8000 7000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 415

subfc or sf (Subtract from Carrying) Instruction

Purpose
Subtracts the contents of a general-purpose register from the contents of another general-purpose register
and places the result in a third general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 8

31 Rc

PowerPC
subfc RT, RA, RB
subfc. RT, RA, RB
subfco RT, RA, RB
subfco. RT, RA, RB

POWER family
sf RT, RA, RB
sf. RT, RA, RB
sfo RT, RA, RB
sfo. RT, RA, RB

See Extended Mnemonics of Fixed-Point Arithmetic Instructions for more information.

Description
The subfc and sf instructions add the ones complement of the contents of general-purpose register (GPR)
RA and 1 to the contents of GPR RB and stores the result in the target GPR RT.

The subfc instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The sf instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

subfc 0 CA 0 None

subfc. 0 CA 1 LT,GT,EQ,SO

subfco 1 SO,OV,CA 0 None

subfco. 1 SO,OV,CA 1 LT,GT,EQ,SO

sf 0 CA 0 None

416 Assembler Language Reference

sf. 0 CA 1 LT,GT,EQ,SO

sfo 1 SO,OV,CA 0 None

sfo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfc instruction, and the four syntax forms of the sf instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in

GPR 6, and sets the Carry bit to reflect the result of the operation:
Assume GPR 4 contains 0x8000 7000.
Assume GPR 10 contains 0x9000 3000.
subfc 6,4,10
GPR 6 now contains 0x0FFF C000.

2. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets Condition Register Field 0 and the Carry bit to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
subfc. 6,4,10
GPR 6 now contains 0x8000 2B00.

3. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception
Register to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0x0000 4500.
subfco 6,4,10
GPR 6 now contains 0x8000 4500.

4. The following code subtracts the contents of GPR 4 from the contents of GPR 10, stores the result in
GPR 6, and sets the Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception
Register and Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0x0000 7000.
subfco. 6,4,10
GPR 6 now contains 0x8000 7000.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

Chapter 8. Instruction Set 417

subfe or sfe (Subtract from Extended) Instruction

Purpose
Adds the one’s complement of the contents of a general-purpose register to the sum of another
general-purpose register and then adds the value of the Fixed-Point Exception Register Carry bit and
stores the result in a third general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 RB

21 OE

22-30 136

31 Rc

PowerPC
subfe RT, RA, RB
subfe. RT, RA, RB
subfeo RT, RA, RB
subfeo. RT, RA, RB

POWER family
sfe RT, RA, RB
sfe. RT, RA, RB
sfeo RT, RA, RB
sfeo. RT, RA, RB

Description
The subfe and sfe instructions add the value of the Fixed-Point Exception Register Carry bit, the contents
of general-purpose register (GPR) RB, and the one’s complement of the contents of GPR RA and store
the result in the target GPR RT.

The subfe instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

The sfe instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

subfe 0 CA 0 None

subfe. 0 CA 1 LT,GT,EQ,SO

subfeo 1 SO,OV,CA 0 None

subfeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfe 0 CA 0 None

418 Assembler Language Reference

sfe. 0 CA 1 LT,GT,EQ,SO

sfeo 1 SO,OV,CA 0 None

sfeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfe instruction, and the four syntax forms of the sfe instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction affects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and

the value of the Fixed-Point Exception Register Carry bit and stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 10 contains 0x8000 7000.
Assume the Carry bit is one.
subfe 6,4,10
GPR 6 now contains 0xF000 4000.

2. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and
the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets
Condition Register field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x0000 4500.
Assume GPR 10 contains 0x8000 7000.
Assume the Carry bit is zero.
subfe. 6,4,10
GPR 6 now contains 0x8000 2AFF.

3. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and
the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets the
Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register to reflect the result
of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0xEFFF FFFF.
Assume the Carry bit is one.
subfeo 6,4,10
GPR 6 now contains 0x6FFF FFFF.

4. The following code adds the one’s complement of the contents of GPR 4, the contents of GPR 10, and
the value of the Fixed-Point Exception Register Carry bit, stores the result in GPR 6, and sets the
Summary Overflow, Overflow, and Carry bits in the Fixed-Point Exception Register and Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0x8000 0000.
Assume GPR 10 contains 0xEFFF FFFF.
Assume the Carry bit is zero.
subfeo. 6,4,10
GPR 6 now contains 0x6FFF FFFE.

Chapter 8. Instruction Set 419

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

subfic or sfi (Subtract from Immediate Carrying) Instruction

Purpose
Subtracts the contents of a general-purpose register from a 16-bit signed integer and places the result in
another general-purpose register.

Syntax

Bits Value

0-5 08

6-10 RT

11-15 RA

16-31 SI

PowerPC
subfic RT, RA, SI

POWER family
sfi RT, RA, SI

Description
The subfic and sfi instructions add the one’s complement of the contents of general-purpose register
(GPR) RA, 1, and a 16-bit signed integer SI. The result is placed in the target GPR RT.

Note: When SI is -1, the subfic and sfi instructions place the one’s complement of the contents of
GPR RA in GPR RT.

The subfic and sfi instructions have one syntax form and do not affect Condition Register Field 0. These
instructions always affect the Carry bit in the Fixed-Point Exception Register.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.
SI Specifies 16-bit signed integer for operation.

Examples
The following code subtracts the contents of GPR 4 from the signed integer 0x0000 7000 and stores the
result in GPR 6:
Assume GPR 4 holds 0x9000 3000.
subfic 6,4,0x00007000
GPR 6 now holds 0x7000 4000.

420 Assembler Language Reference

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

subfme or sfme (Subtract from Minus One Extended) Instruction

Purpose
Adds the one’s complement of a general-purpose register to -1 with carry.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 232

31 Rc

PowerPC
subfme RT, RA
subfme. RT, RA
subfmeo RT, RA
subfmeo. RT, RA

POWER family
sfme RT, RA
sfme. RT, RA
sfmeo RT, RA
sfmeo. RT, RA

Description
The subfme and sfme instructions add the one’s complement of the contents of general-purpose
register(GPR) RA, the Carry Bit of the Fixed-Point Exception Register, and x’FFFFFFFF’ and place the
result in the target GPR RT.

The subfme instruction has four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

The sfme instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

subfme 0 CA 0 None

subfme. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 421

subfmeo 1 SO,OV,CA 0 None

subfmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfme 0 CA 0 None

sfme. 0 CA 1 LT,GT,EQ,SO

sfmeo 1 SO,OV,CA 0 None

sfmeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfme instruction, and the four syntax forms of the sfme instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the

Fixed-Point Exception Register, and x’FFFFFFFF’ and stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is set to one.
subfme 6,4
GPR 6 now contains 0x6FFF CFFF.

2. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the
Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets Condition
Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume the Carry bit is set to zero.
subfme. 6,4
GPR 6 now contains 0x4FFB CFFE.

3. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the
Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets the Fixed-Point
Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0xEFFF FFFF.
Assume the Carry bit is set to one.
subfmeo 6,4
GPR 6 now contains 0x1000 0000.

4. The following code adds the one’s complement of the contents of GPR 4, the Carry bit of the
Fixed-Point Exception Register, and x’FFFFFFFF’, stores the result in GPR 6, and sets Condition
Register Field 0 and the Fixed-Point Exception Register to reflect the result of the operation:
Assume GPR 4 contains 0xEFFF FFFF.
Assume the Carry bit is set to zero.
subfmeo. 6,4
GPR 6 now contains 0x0FFF FFFF.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

422 Assembler Language Reference

subfze or sfze (Subtract from Zero Extended) Instruction

Purpose
Adds the one’s complement of the contents of a general-purpose register, the Carry bit in the Fixed-Point
Exception Register, and 0 and places the result in a second general-purpose register.

Syntax

Bits Value

0-5 31

6-10 RT

11-15 RA

16-20 ///

21 OE

22-30 200

31 Rc

PowerPC
subfze RT, RA
subfze. RT, RA
subfzeo RT, RA
subfzeo. RT, RA

POWER family
sfze RT, RA
sfze. RT, RA
sfzeo RT, RA
sfzeo. RT, RA

Description
The subfze and sfze instructions add the one’s complement of the contents of general-purpose register
(GPR) RA, the Carry bit of the Fixed-Point Exception Register, and x’00000000’ and store the result in the
target GPR RT.

The subfze instruction has four syntax forms. Each syntax form has a different effect on Condition
Register Field 0 and the Fixed-Point Exception Register.

The sfze instruction has four syntax forms. Each syntax form has a different effect on Condition Register
Field 0 and the Fixed-Point Exception Register.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

subfze 0 CA 0 None

subfze. 0 CA 1 LT,GT,EQ,SO

subfzeo 1 SO,OV,CA 0 None

subfzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

sfze 0 CA 0 None

sfze. 0 CA 1 LT,GT,EQ,SO

Chapter 8. Instruction Set 423

sfzeo 1 SO,OV,CA 0 None

sfzeo. 1 SO,OV,CA 1 LT,GT,EQ,SO

The four syntax forms of the subfze instruction, and the four syntax forms of the sfze instruction, always
affect the Carry bit (CA) in the Fixed-Point Exception Register. If the syntax form sets the Overflow
Exception (OE) bit to 1, the instruction effects the Summary Overflow (SO) and Overflow (OV) bits in the
Fixed-Point Exception Register. If the syntax form sets the Record (Rc) bit to 1, the instruction affects the
Less Than (LT) zero, Greater Than (GT) zero, Equal To (EQ) zero, and Summary Overflow (SO) bits in
Condition Register Field 0.

Parameters

RT Specifies target general-purpose register where result of operation is stored.
RA Specifies source general-purpose register for operation.

Examples
1. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero and

stores the result in GPR 6:
Assume GPR 4 contains 0x9000 3000.
Assume the Carry bit is set to one.
subfze 6,4
GPR 6 now contains 0x6FFF D000.

2. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,
stores the result in GPR 6, and sets Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume the Carry bit is set to one.
subfze. 6,4
GPR 6 now contains 0x4FFB D000.

3. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,
stores the result in GPR 6, and sets the Fixed-Point Exception Register to reflect the result of the
operation:
Assume GPR 4 contains 0xEFFF FFFF.
Assume the Carry bit is set to zero.
subfzeo 6,4
GPR 6 now contains 0x1000 0000.

4. The following code adds the one’s complement of the contents of GPR 4, the Carry bit, and zero,
stores the result in GPR 6, and sets Condition Register Field 0 and the Fixed-Point Exception Register
to reflect the result of the operation:
Assume GPR 4 contains 0x70FB 6500.
Assume the Carry bit is set to zero.
subfzeo 6,4
GPR 6 now contains 0x8F04 9AFF.

Related Information
Fixed-Point Processor .

Fixed-Point Arithmetic Instructions .

424 Assembler Language Reference

svc (Supervisor Call) Instruction

Purpose
Generates a supervisor call interrupt.

Note: The svc instruction is supported only in the POWER family architecture.

Syntax

Bits Value

0-5 17

6-10 ///

11-15 ///

16-19 FLI

20-26 LEV

27-29 FL2

30 SA

31 LK

POWER family
svc LEV, FL1, FL2
svcl LEV, FL1, FL2

Bits Value

0-5 17

6-10 ///

11-15 ///

16-29 SV

30 SA

31 LK

svca SV
svcla SV

Description
The svc instruction generates a supervisor call interrupt and places bits 16-31 of the svc instruction into
bits 0-15 of the Count Register (CR) and bits 16-31 of the Machine State Register (MSR) into bits 16-31 of
the CR.

Consider the following when using the svc instruction:

v If the SVC Absolute bit (SA) is set to 0, the instruction fetch and execution continues at one of the 128
offsets, b’1’|| LEV ||b’00000’, to the base effective address (EA) indicated by the setting of the IP bit of
the MSR. FL1 and FL2 fields could be used for passing data to the SVC routine but are ignored by
hardware.

v If the SVC Absolute bit (SA) is set to 1, then instruction fetch and execution continues at the offset,
x’1FE0’, to the base EA indicated by the setting of the IP bit of the MSR.

Chapter 8. Instruction Set 425

v If the Link bit (LK) is set to 1, the EA of the instruction following the svc instruction is placed in the Link
Register.

Notes:

1. To ensure correct operation, an svc instruction must be preceded by an unconditional branch
or a CR instruction. If a useful instruction cannot be scheduled as specified, use a no-op
version of the cror instruction with the following syntax:
cror BT,BA,BB No-op when BT = BA = BB

2. The svc instruction has the same op code as the sc (System Call) instruction.

The svc instruction has four syntax forms. Each syntax form affects the MSR.

Syntax Form Link Bit (LK) SVC Absolute Bit (SA) Machine State Register Bits

svc 0 0 EE,PR,FE set to zero

svcl 1 0 EE,PR,FE set to zero

svca 0 1 EE,PR,FE set to zero

svcla 1 1 EE,PR,FE set to zero

The four syntax forms of the svc instruction never affect the FP, ME, AL, IP, IR, or DR bits of the MSR.
The EE, PR, and FE bits of the MSR are always set to 0. The Fixed-Point Exception Register and
Condition Register Field 0 are unaffected by the svc instruction.

Parameters

LEV Specifies execution address.
FL1 Specifies field for optional data passing to SVC routine.
FL2 Specifies field for optional data passing to SVC routine.
SV Specifies field for optional data passing to SVC routine.

Related Information
The cror (Condition Register OR) instruction, sc (System Call) instruction.

Branch Processor .

System Call Instructions .

Functional Differences for POWER family and PowerPC Instructions .

sync (Synchronize) or dcs (Data Cache Synchronize) Instruction

Purpose
The PowerPC instruction, sync, ensures that all previous instructions have completed before the next
instruction is initiated.

The POWER family instruction, dcs, causes the processor to wait until all data cache lines have been
written.

426 Assembler Language Reference

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 ///

21-30 598

31 /

PowerPC

sync

POWER family

dcs

Description
The PowerPC instruction, sync, provides an ordering function that ensures that all instructions initiated
prior to the sync instruction complete, and that no subsequent instructions initiate until after the sync
instruction completes. When the sync instruction completes, all storage accesses initiated prior to the
sync instruction are complete.

Note: The sync instruction takes a significant amount of time to complete. The eieio (Enforce
In-order Execution of I/O) instruction is more appropriate for cases where the only requirement is to
control the order of storage references to I/O devices.

The POWER family instruction, dcs, causes the processor to wait until all data cache lines being written or
scheduled for writing to main memory have finished writing.

The dcs and sync instructions have one syntax form and do not affect the Fixed-Point Exception Register.
If the Record (Rc) bit is set to 1, the instruction form is invalid.

Examples
The following code makes the processor wait until the result of the dcbf instruction is written into main
memory:
Assume that GPR 4 holds 0x0000 3000.
dcbf 1,4
sync
Wait for memory to be updated.

Related Information
The eieio (Enforce In-order Execution of I/O) instruction.

Processing and Storage

Chapter 8. Instruction Set 427

td (Trap Double Word) Instruction

Purpose
Generate a program interrupt when a specific condition is true.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 31

6-10 TO

11-15 A

16-20 B

21-30 68

31 0

PowerPC64
td TO, RA, RB

Description
The contents of general-purpose register (GPR) RA are compared with the contents of GPR RB. If any bit
in the TO field is set and its corresponding condition is met by the result of the comparison, then a
trap-type program interrupt is generated.

The TO bit conditions are defined as follows:

TO bit ANDed with Condition
0 Compares Less Than.
1 Compares Greater Than.
2 Compares Equal.
3 Compares Logically Less Than.
4 Compares Logically Greater Than.

Parameters

TO Specifies TO bits that are ANDed with compare results.
RA Specifies source general-purpose register for compare.
RB Specifies source general-purpose register for compare.

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Examples
The following code generates a program interrupt:

428 Assembler Language Reference

Assume GPR 3 holds 0x0000_0000_0000_0001.
Assume GPR 4 holds 0x0000_0000_0000_0000.
td 0x2,3,4 # A trap type Program Interrupt occurs.

Related Information
Branch Processor .

Fixed-Point Trap Instructions

tdi (Trap Double Word Immediate) Instruction

Purpose
Generate a program interrupt when a specific condition is true.

This instruction should only be used on 64-bit PowerPC processors running a 64-bit application.

Syntax

Bits Value

0-5 02

6-10 TO

11-15 A

16-31 SIMM

PowerPC64
tdi TO, RA, SIMM

Description
The contents of general-purpose register RA are compared with the sign-extended value of the SIMM field.
If any bit in the TO field is set and its corresponding condition is met by the result of the comparison, then
the system trap handler is invoked.

The TO bit conditions are defined as follows:

TO bit ANDed with Condition
0 Compares Less Than.
1 Compares Greater Than.
2 Compares Equal.
3 Compares Logically Less Than.
4 Compares Logically Greater Than.

Parameters

TO Specifies TO bits that are ANDed with compare results.
RA Specifies source general-purpose register for compare.
SIMM 16-bit two’s-complement value which will be sign-extended for comparison.

Chapter 8. Instruction Set 429

Implementation
This instruction is defined only for 64-bit implementations. Using it on a 32-bit implementation will cause
the system illegal instruction error handler to be invoked.

Related Information
Branch Processor .

Fixed-Point Trap Instructions

tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction

Purpose
Makes a translation look-aside buffer entry invalid for subsequent address translations.

Notes:

1. The tlbie instruction is optional for the PowerPC architecture. It is supported on PowerPC 601
RISC Microprocessor, PowerPC 603 RISC Microprocessor and PowerPC 604 RISC
Microprocessor.

2. tlbi is a POWER family instruction.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 RB

21-30 306

31 /

PowerPC
tlbie RB

POWER family
tlbi RA, RB

Description
The PowerPC instruction tlbie searches the Translation Look-Aside Buffer (TLB) for an entry
corresponding to the effective address (EA). The search is done regardless of the setting of Machine State
Register (MSR) Instruction Relocate bit or the MSR Data Relocate bit. The search uses a portion of the
EA including the least significant bits, and ignores the content of the Segment Registers. Entries that
satisfy the search criteria are made invalid so will not be used to translate subsequent storage accesses.

The POWER family instruction tlbi expands the EA to its virtual address and invalidates any information in
the TLB for the virtual address, regardless of the setting of MSR Instruction Relocate bit or the MSR Data
Relocate bit. The EA is placed into the general-purpose register (GPR) RA.

Consider the following when using the POWER family instruction tlbi:

430 Assembler Language Reference

v If GPR RA is not 0, the EA is the sum of the contents of GPR RA and GPR RB. If GPR RA is 0, EA is
the sum of the contents of GPR RB and 0.

v If GPR RA is not 0, EA is placed into GPR RA.

v If EA specifies an I/O address, the instruction is treated as a no-op, but if GPR RA is not 0, EA is
placed into GPR RA.

The tlbie and tlbi instructions have one syntax form and do not affect the Fixed-Point Exception Register.
If the Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters
The following parameter pertains to the PowerPC instruction, tlbie, only:

RB Specifies the source general-purpose register containing the EA for the search.

The following parameters pertain to the POWER family instruction, tlbi, only:

RA Specifies the source general-purpose register for EA calculation and, if RA is not GPR 0, the target
general-purpose register for operation.

RB Specifies source general-purpose register for EA calculation.

Security
The tlbie and tlbi instructions are privileged.

Related Information
Processing and Storage

tlbld (Load Data TLB Entry) Instruction

Purpose
Loads the data Translation Look-Aside Buffer (TLB) entry to assist a TLB reload function performed in
software on the PowerPC 603 RISC Microprocessor.

Notes:

1. The tlbld instruction is supported only on the PowerPC 603 RISC Microprocessor. It is not part of
the PowerPC architecture and not part of the POWER family architecture.

2. TLB reload is usually done by the hardware, but on the PowerPC 603 RISC Microprocessor this
is done by software.

3. When AIX Version 4 is installed on a system using the PowerPC 603 RISC Microprocessor,
software to perform the TLB reload function is provided as part of the operating system. You are
likely to need to use this instruction only if you are writing software for the PowerPC 603 RISC
Microprocessor intended to operate without AIX Version 4.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 RB

Chapter 8. Instruction Set 431

Bits Value

21-30 978

31 /

PowerPC 603 RISC Microprocessor
tlbld RB

Description
For better understanding, the following information is presented:

v Information about a typical TLB reload function that would call the tlbld instruction.

v An explanation of what the tlbld instruction does.

Typical TLB Reload Function
In the processing of the address translation, the Effective Address (EA) is first translated into a Virtual
Address (VA). The part of the Virtual Address is used to select the TLB entry. If an entry is not found in the
TLB, a miss is detected. When a miss is detected, the EA is loaded into the data TLB Miss Address
(DMISS) register. The first word of the target Page Table Entry is loaded into the data TLB Miss Compare
(DCMP) register. A routine is invoked to compare the content of DCMP with all the entries in the primary
Page Table Entry Group (PTEG) pointed to by the HASH1 register and all the entries in the secondary
PTEG pointed to by the HASH2 register. When there is a match, the tlbld instruction is invoked.

tlbld Instruction Function
The tlbld instruction loads the data Translation Look-Aside Buffer (TLB) entry selected by the content of
register RB in the following way:

v The content of the data TLB Miss Compare (DCMP) register is loaded into the higher word of the data
TLB entry.

v The contents of the RPA register and the data TLB Miss Address (DMISS) register are merged and
loaded into the lower word of the data TLB entry.

The tlbld instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters

RB Specifies the source general-purpose register for EA.

Security
The tlbld instruction is privileged.

Related Information
The tlbli (Load Instruction TLB Entry) Instruction.

Sections 2.4, 4.11.4, 7.5.2, 7.6.1, and 7.6.3 of PowerPC 603 RISC Microprocessor User’s Manual.

Section 12.5 of PowerPC Architecture.

432 Assembler Language Reference

tlbli (Load Instruction TLB Entry) Instruction

Purpose
Loads the instruction Translation Look-Aside Buffer (TLB) entry to assist a TLB reload function performed
in software on the PowerPC 603 RISC Microprocessor.

Notes:

1. The tlbli instruction is supported only on the PowerPC 603 RISC Microprocessor. It is not part of
the PowerPC architecture and not part of the POWER family architecture.

2. TLB reload is usually done by the hardware, but on the PowerPC 603 RISC Microprocessor this
is done by software.

3. When AIX Version 4 is installed on a system using the PowerPC 603 RISC Microprocessor,
software to perform the TLB reload function is provided as part of the operating system. You are
likely to need to use this instruction only if you are writing software for the PowerPC 603 RISC
Microprocessor intended to operate without AIX Version 4.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 RB

21-30 1010

31 /

PowerPC 603 RISC Microprocessor
tlbli RB

Description
For better understanding, the following information is presented:

v Information about a typical TLB reload function that would call the tlbli instruction.

v An explanation of what the tlbli instruction does.

Typical TLB Reload Function
In the processing of the address translation, the Effective Address (EA) is first translated into a Virtual
Address (VA). The part of the Virtual Address is used to select the TLB entry. If an entry is not found in the
TLB, a miss is detected. When a miss is detected, the EA is loaded into the instruction TLB Miss Address
(IMISS) register. The first word of the target Page Table Entry is loaded into the instruction TLB Miss
Compare (ICMP) register. A routine is invoked to compare the content of ICMP with all the entries in the
primary Page Table Entry Group (PTEG) pointed to by the HASH1 register and with all the entries in the
secondary PTEG pointed to by the HASH2 register. When there is a match, the tlbli instruction is invoked.

tlbli Instruction Function
The tlbli instruction loads the instruction Translation Look-Aside Buffer (TLB) entry selected by the content
of register RB in the following way:

v The content of the instruction TLB Miss Compare (DCMP) register is loaded into the higher word of the
instruction TLB entry.

Chapter 8. Instruction Set 433

v The contents of the RPA register and the instruction TLB Miss Address (IMISS) register are merged and
loaded into the lower word of the instruction TLB entry.

The tlbli instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
Record bit (Rc) is set to 1, the instruction form is invalid.

Parameters

RB Specifies the source general-purpose register for EA.

Security
The tlbli instruction is privileged.

Related Information
The tlbld (Load Data TLB Entry) Instruction.

Sections 2.4, 4.11.4, 7.5.2, 7.6.1, and 7.6.3 of PowerPC 603 RISC Microprocessor User’s Manual.

Section 12.5 of PowerPC Architecture.

tlbsync (Translation Look-Aside Buffer Synchronize) Instruction

Purpose
Ensures that a tlbie and tlbia instruction executed by one processor has completed on all other
processors.

Note: The tlbsync instruction is defined only in the PowerPC architecture and is an optional
instruction. It is supported on the PowerPC 603 RISC Microprocessor and on the PowerPC 604
RISC Microprocessor, but not on the PowerPC 601 RISC Microprocessor.

Syntax

Bits Value

0-5 31

6-10 ///

11-15 ///

16-20 ///

21-30 566

31 /

PowerPC

tlbsync

Description
The tlbsync instruction does not complete until all previous tlbie and tlbia instructions executed by the
processor executing the tlbsync instruction have been received and completed by all other processors.

434 Assembler Language Reference

The tlbsync instruction has one syntax form and does not affect the Fixed-Point Exception Register. If the
Record bit (Rc) is set to 1, the instruction form is invalid.

Security
The tlbsync instruction is privileged.

Related Information
Processing and Storage

tw or t (Trap Word) Instruction

Purpose
Generates a program interrupt when a specified condition is true.

Syntax

Bits Value

0-5 31

6-10 TO

11-15 RA

16-20 RB

21-30 4

31 /

PowerPC
tw TO, RA, RB

POWER family
t TO, RA, RB

See Extended Mnemonics of Fixed-Point Trap Instructions for more information.

Description
The tw and t instructions compare the contents of general-purpose register (GPR) RA with the contents of
GPR RB, AND the compared results with TO, and generate a trap-type Program Interrupt if the result is
not 0.

The TO bit conditions are defined as follows.

TO bit ANDed with Condition
0 Compares Less Than.
1 Compares Greater Than.
2 Compares Equal.
3 Compares Logically Less Than.
4 Compares Logically Greater Than.

The tw and t instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Chapter 8. Instruction Set 435

Parameters

TO Specifies TO bits that are ANDed with compare results.
RA Specifies source general-purpose register for compare.
RB Specifies source general-purpose register for compare.

Examples
The following code generates a Program Interrupt:
Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x789A 789B.
tw 0x10,4,7
A trap type Program Interrupt occurs.

Related Information
Branch Processor .

Fixed-Point Trap Instructions .

twi or ti (Trap Word Immediate) Instruction

Purpose
Generates a program interrupt when a specified condition is true.

Syntax

Bits Value

0-5 03

6-10 TO

11-15 RA

16-31 SI

PowerPC
twi TO, RA, SI

POWER family
ti TO, RA, SI

See Extended Mnemonics of Fixed-Point Trap Instructions for more information.

Description
The twi and ti instructions compare the contents of general-purpose register (GPR) RA with the sign
extended SI field, AND the compared results with TO, and generate a trap-type program interrupt if the
result is not 0.

The TO bit conditions are defined as follows.

TO bit ANDed with Condition
0 Compares Less Than.
1 Compares Greater Than.

436 Assembler Language Reference

TO bit ANDed with Condition
2 Compares Equal.
3 Compares Logically Less Than.
4 Compares Logically Greater Than.

The twi and ti instructions have one syntax form and do not affect the Fixed-Point Exception Register or
Condition Register Field 0.

Parameters

TO Specifies TO bits that are ANDed with compare results.
RA Specifies source general-purpose register for compare.
SI Specifies sign-extended value for compare.

Examples
The following code generates a Program Interrupt:
Assume GPR 4 holds 0x0000 0010.
twi 0x4,4,0x10
A trap type Program Interrupt occurs.

Related Information
Branch Processor .

Fixed-Point Trap Instructions .

xor (XOR) Instruction

Purpose
XORs the contents of two general-purpose registers and places the result in another general-purpose
register.

Syntax

Bits Value

0-5 31

6-10 RS

11-15 RA

16-20 RB

21-30 316

31 Rc

xor RA, RS, RB
xor. RA, RS, RB

Description
The xor instruction XORs the contents of general-purpose register (GPR) RS with the contents of GPR RB
and stores the result in GPR RA.

Chapter 8. Instruction Set 437

The xor instruction has two syntax forms. Each syntax form has a different effect on Condition Register
Field 0.

Syntax Form Overflow Exception
(OE)

Fixed-Point
Exception Register

Record Bit (Rc) Condition Register
Field 0

xor None None 0 None

xor. None None 1 LT,GT,EQ,SO

The two syntax forms of the xor instruction never affect the Fixed-Point Exception Register. If the syntax
form sets the Record (Rc) bit to 1, the instruction affects the Less Than (LT) zero, Greater Than (GT) zero,
Equal To (EQ) zero, and Summary Overflow (SO) bits in Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
RB Specifies source general-purpose register for operation.

Examples
1. The following code XORs the contents of GPR 4 and GPR 7 and stores the result in GPR 6:

Assume GPR 4 contains 0x9000 3000.
Assume GPR 7 contains 0x789A 789B.
xor 6,4,7
GPR 6 now contains 0xE89A 489B.

2. The following code XORs the contents of GPR 4 and GPR 7, stores the result in GPR 6, and sets
Condition Register Field 0 to reflect the result of the operation:
Assume GPR 4 contains 0xB004 3000.
Assume GPR 7 contains 0x789A 789B.
xor. 6,4,7
GPR 6 now contains 0xC89E 489B.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

xori or xoril (XOR Immediate) Instruction

Purpose
XORs the lower 16 bits of a general-purpose register with a 16-bit unsigned integer and places the result
in another general-purpose register.

Syntax

Bits Value

0-5 26

6-10 RS

11-15 RA

16-31 UI

438 Assembler Language Reference

PowerPC
xori RA, RS, UI

POWER family
xoril RA, RS, UI

Description
The xori and xoril instructions XOR the contents of general-purpose register (GPR) RS with the
concatenation of x’0000’ and a 16-bit unsigned integer UI and store the result in GPR RA.

The xori and xoril instructions have only one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.

Examples
The following code XORs GPR 4 with 0x0000 5730 and places the result in GPR 6:
Assume GPR 4 contains 0x7B41 92C0.
xori 6,4,0x5730
GPR 6 now contains 0x7B41 C5F0.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

xoris or xoriu (XOR Immediate Shift) Instruction

Purpose
XORs the upper 16 bits of a general-purpose register with a 16-bit unsigned integer and places the result
in another general-purpose register.

Syntax

Bits Value

0-5 27

6-10 RS

11-15 RA

16-31 UI

PowerPC
xoris RA, RS, UI

Chapter 8. Instruction Set 439

POWER family
xoriu RA, RS, UI

Description
The xoris and xoriu instructions XOR the contents of general-purpose register (GPR) RS with the
concatenation of a 16-bit unsigned integer UI and 0x’0000’ and store the result in GPR RA.

The xoris and xoriu instructions have only one syntax form and do not affect the Fixed-Point Exception
Register or Condition Register Field 0.

Parameters

RA Specifies target general-purpose register where result of operation is stored.
RS Specifies source general-purpose register for operation.
UI Specifies 16-bit unsigned integer for operation.

Example
The following code XORs GPR 4 with 0x0079 0000 and stores the result in GPR 6:
Assume GPR 4 holds 0x9000 3000.
xoris 6,4,0x0079
GPR 6 now holds 0x9079 3000.

Related Information
Fixed-Point Processor .

Fixed-Point Logical Instructions .

440 Assembler Language Reference

Chapter 9. Pseudo-ops

This chapter provides an overview of assembler pseudo-ops and reference information for all pseudo-ops.

Pseudo-ops Overview

A pseudo-operation, commonly called a pseudo-op, is an instruction to the assembler that does not
generate any machine code. The assembler resolves pseudo-ops during assembly, unlike machine
instructions, which are resolved only at runtime. Pseudo-ops are sometimes called assembler instructions,
assembler operators, or assembler directives.

In general, pseudo-ops give the assembler information about data alignment, block and segment definition,
and base register assignment. The assembler also supports pseudo-ops that give the assembler
information about floating point constants and symbolic debugger information (dbx).

While they do not generate machine code, the following pseudo-ops can change the contents of the
assembler’s location counter:

v .align

v .byte

v .comm

v .csect

v .double

v .dsect

v .float

v .lcomm

v .long

v .org

v .short

v .space

v .string

v .vbyte

Pseudo-ops Grouped by Function
Pseudo-ops can be related according to functionality into the following groups:

v Data Alignment

v Data Definition

v Storage Definition

v Addressing

v Assembler Section Definition

v External Symbol Definition

v Static Symbol Definition

v Support for Calling Conventions

v Miscellaneous

v Symbol Table Entries for Debuggers

v Target Environment Indication

© Copyright IBM Corp. 1997, 2001 441

../../cmds/aixcmds2/dbx.htm#HDRA2699EE

Data Alignment

The following pseudo-op is used in the data or text section of a program:

v .align

Data Definition

The following pseudo-ops are used for data definition:

v .byte

v .double

v .float

v .long

v .short

v .string

v .vbyte

In most instances, use these pseudo-ops to create data areas to be used by a program, as shown by this
example.

.csect data[rw]
greeting: .long 'H,'O,'W,'D,'Y

.

.

.csect text[pr]

Assume GPR 5 contains the address of
csect data[rw].

lm 11, greeting(5)

Storage Definition

The following pseudo-ops define or map storage:

v .dsect

v .space

Addressing

The following pseudo-ops assign or dismiss a register as a base register:

v .drop

v .using

Assembler Section Definition

The following pseudo-ops define the sections of an assembly language program:

v .comm

v .csect

v .lcomm

v .tc

v .toc

External Symbol Definition

The following pseudo-ops define a variable as a global variable or an external variable (variables defined
in external modules):

v .extern

442 Assembler Language Reference

v .globl

Static Symbol Definition
The following pseudo-op defines a static symbol:

v .lglobl

Support for Calling Conventions

The following pseudo-op defines a debug traceback tag for performing tracebacks when debugging
programs:

v .tbtag

Miscellaneous

The following pseudo-ops perform miscellaneous functions:

.hash Provides type-checking information.

.org Sets the value of the current location counter.

.ref
Creates a special type entry in the relocation table.

.rename Creates a synonym or alias for an illegal or undesirable name.

.set Assigns a value and type to a symbol.

.source
Identifies the source language type.

.tocof Defines a symbol as the table of contents (TOC) of another module.

.xline Provides file and line number information.

Symbol Table Entries for Debuggers

The following pseudo-ops provide additional information which is required by the symbolic debugger (dbx):

v .bb

v .bc

v .bf

v .bi

v .bs

v .eb

v .ec

v .ef

v .ei

v .es

v .file

v .function

v .line

v .stabx

v .xline

Target Environment Indication
The following pseudo-op defines the intended target environment:

v .machine

Chapter 9. Pseudo-ops 443

Notational Conventions

White space is required unless otherwise specified. A space may optionally occur after a comma. White
space may consist of one or more white spaces.

Some pseudo-ops may not use labels. However, with the exception of the .csect pseudo-op, you can put
a label in front of a pseudo-op statement just as you would for a machine instruction statement.

The following notational conventions are used to describe pseudo-ops:

Name Any valid label.
Register A general-purpose register. Register is an expression that evaluates to an integer

between 0 and 31, inclusive.
Number An expression that evaluates to an integer.
Expression Unless otherwise noted, the Expression variable signifies a relocatable constant or

absolute expression.
FloatingConstant A floating-point constant.
StringConstant A string constant.
[] Brackets enclose optional operands except in the .csect and .tc pseudo-ops, which

require brackets in syntax.

.align Pseudo-op

Purpose
Advances the current location counter until a boundary specified by the Number parameter is reached.

Syntax

.align Number

Description
The .align pseudo-op is normally used in a control section (csect) that contains data.

If the Number parameter evaluates to 0, alignment occurs on a byte boundary. If the Number parameter
evaluates to 1, alignment occurs on a halfword boundary. If the Number parameter evaluates to 2,
alignment occurs on a word boundary. If the Number parameter evaluates to 3, alignment occurs on a
doubleword boundary.

If the location counter is not aligned as specified by the Number parameter, the assembler advances the
current location counter until the number of low-order bits specified by the Number parameter are filled
with the value 0 (zero).

If the .align pseudo-op is used within a .csect pseudo-op of type PR or GL which indicates a section
containing instructions, alignment occurs by padding with nop (no-operation) instructions. In this case, the
no-operation instruction is equivalent to a branch to the following instruction. If the align amount is less
than a fullword, the padding consists of zeros.

Parameters

Number Specifies an absolute expression that evaluates to an integer value from 0 to 12, inclusive. The value
indicates the log base 2 of the desired alignment. For example, an alignment of 8 (a doubleword) would
be represented by an integer value of 3; an alignment of 4096 (one page) would be represented by an
integer value of 12.

444 Assembler Language Reference

Examples
The following example demonstrates the use of the .align pseudo-op:

.csect progdata[RW]

.byte 1
Location counter now at odd number

.align 1

Location counter is now at the next
halfword boundary.

.byte 3,4

.

.

.

.align 2 # Insure that the label cont
and the .long pseudo-op are
aligned on a full word
boundary.

cont: .long 5004381

Related Information
The .byte pseudo-op, .comm pseudo-op, .csect pseudo-op, .double pseudo-op, .float pseudo-op, .long
pseudo-op, .short pseudo-op.

.bb Pseudo-op

Purpose
Identifies the beginning of an inner block and provides information specific to the beginning of an inner
block.

Syntax

.bb Number

Description
The .bb pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bb pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

Number Specifies the line number in the original source file on which the inner block begins.

Examples
The following example demonstrates the use of the .bb pseudo-op:
.bb 5

Chapter 9. Pseudo-ops 445

.bc Pseudo-op

Purpose
Identifies the beginning of a common block and provides information specific to the beginning of a
common block.

Syntax

.bc StringConstant

Description
The .bc pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bc pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

StringConstant Represents the symbol name of the common block as defined in the original source file.

Examples
The following example demonstrates the use of the .bc pseudo-op:
.bc "commonblock"

Related Information
Pseudo-ops Overview.

The .ec pseudo-op.

.bf Pseudo-op

Purpose
Identifies the beginning of a function and provides information specific to the beginning of a function.

Syntax

.bf Number

Description
The .bf pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bf pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Note: The .function pseudo-op must be used if the .bf pseudo-op is used.

Parameters

Number Represents the absolute line number in the original source file on which the function begins.

446 Assembler Language Reference

Examples
The following example demonstrates the use of the .bf pseudo-op:
.bf 5

Related Information
Pseudo-ops Overview.

The .ef pseudo-op, .function pseudo-op.

.bi Pseudo-op

Purpose
Identifies the beginning of an included file and provides information specific to the beginning of an included
file.

Syntax

.bi StringConstant

Description
The .bi pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bi pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

The .bi pseudo-op should be used with the .line pseudo-op.

Parameters

StringConstant Represents the name of the original source file.

Examples
The following example demonstrates the use of the .bi pseudo-op:
.bi "file.s"

Related Information
Pseudo-ops Overview.

The .ei pseudo-op, .line pseudo-op.

.bs Pseudo-op

Purpose
Identifies the beginning of a static block and provides information specific to the beginning of a static
block.

Syntax

.bs Name

Chapter 9. Pseudo-ops 447

Description
The .bs pseudo-op provides symbol table information necessary when using the symbolic debugger.

The .bs pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

Name Represents the symbol name of the static block as defined in the original source file.

Examples
The following example demonstrates the use of the .bs pseudo-op:
.lcomm cgdat, 0x2b4
.csect .text[PR]
.bs cgdat
.stabx "ONE:1=Ci2,0,4;",0x254,133,0
.stabx "TWO:S2=G5TWO1:3=Cc5,0,5;,0,40;;",0x258,133,8
.es

Related Information
Pseudo-ops Overview.

The .comm pseudo-op, .es pseudo-op, .lcomm pseudo-op.

.byte Pseudo-op

Purpose
Assembles specified values represented by the Expression parameter into consecutive bytes.

Syntax
.byte Expression[,Expression...]

Description
The .byte pseudo-op changes an expression or a string of expressions into consecutive bytes of data.
ASCII character constants (for example, ’X) and string constants (for example, Hello, world) can also be
assembled using the .byte pseudo-op. Each letter will be assembled into consecutive bytes. However, an
expression cannot contain externally defined symbols. Also, an expression value longer than one byte will
be truncated on the left.

Parameters

Expression Specifies a value that is assembled into consecutive bytes.

Examples
The following example demonstrates the use of the .byte pseudo-op:

.set olddata,0xCC

.csect data[rw]
mine: .byte 0x3F,0x7+0xA,olddata,0xFF

Load GPR 3 with the address of csect data[rw].
.csect text[pr]
l 3,mine(4)

448 Assembler Language Reference

GPR 3 now holds 0x3F11 CCFF.
Character constants can be represented in
several ways:

.csect data[rw]

.byte "Hello, world"

.byte 'H,'e,'l,'l,'o,',,' ,'w,'o,'r,'l,'d

Both of the .byte statements will produce
0x4865 6C6C 6F2C 2077 6F72 6C64.

Related Information
Pseudo-ops Overview.

The .string pseudo-op, .vbyte pseudo-op.

.comm Pseudo-op

Purpose
Defines an uninitialized block of storage called a common block, which can be common to more than one
module.

Syntax

.comm Qualname, Expression[, Number]

where QualName = Name[[StorageMappingClass]]

Note: Name is required. StorageMappingClass is optional and enclosed within brackets if specified.
RW is the assumed default ifStorageMappingClass is omitted.

Description
The .comm pseudo-op defines a block of storage specified by the Qualname parameter. The the block
size is specified in bytes by the Expression parameter.

Note: By convention, use of the TD storage mapping class is restricted to common blocks no more
than four (4) bytes long.

The valid values for StorageMappingClass are RW, TD, UC, and BS. These values are explained in the
article on the .csect pseudo-op. If any other value is used for StorageMappingClass, the default value RW
is used and a warning message is reported if the -w flag is in effect.

If TD is used for the storage mapping class, a block of zeroes, the length specified by the Expression
parameter, will be written into the TOC area as an initialized csect in the .data section. If RW, UC, or BS is
used as the storage mapping class, the block is not initialized in the current module and has symbol type
CM (Common). At load time, the space for CM control sections with RW, UC, or BC storage mapping
classes is created in the .bss section at the end of the .data section.

Several modules can share the same common block. If any of those modules have an external Control
Section (csect) with the same name and the csect with the same name has a storage mapping class other
than BS or UC, then the common block is initialized and becomes that other Control Section. If the
common block has TD as its storage mapping class, the csect will be in the TOC area. This is
accomplished at bind time.

Chapter 9. Pseudo-ops 449

If more than one uninitialized common block with the same Qualname is found at bind time, space is
reserved for the largest one.

A common block can be aligned by using the Number parameter, which is specified as the log base 2 of
the alignment desired.

Parameters

Qualname Specifies the name and storage mapping class of the common block. If the StorageMappingClass
part of the parameter is omitted, the default value RW is used. Valid StorageMappingClass
values for a common block are RW, TD, UC and BS.

Expression Specifies the absolute expression that gives the length of the specified common block in bytes.
Number Specifies the optional alignment of the specified common block. This is specified as the log base

2 of the alignment desired. For example, an alignment of 8 (or doubleword) would be 3 and an
alignment of 2048 would be 11. This is similar to the argument for the .align pseudo-op.

Examples
1. The following example demonstrates the use of the .comm pseudo-op:

.comm proc,5120
proc is an uninitialized common block of
storage 5120 bytes long which is
globally visible.

Assembler SourceFile A contains:
.comm st,1024

Assembler SourceFile B contains:

.globl st[RW]

.csect st[RW]

.long 1

.long 2

Using st in the above two programs refers to
Control Section st in Assembler SourceFile B.

2. This example shows how two different modules access the same data:

a. Source code for C module td2.c:
/* This C module named td2.c */
extern long t_data;
extern void mod_s();
main()
{

t_data = 1234;
mod_s();
printf("t_data is %d\n", t_data);

}

b. Source for assembler module mod2.s:
.file "mod2.s"
.csect .mod_s[PR]
.globl .mod_s[PR]
.set RTOC, 2
l 5, t_data[TD](RTOC) # Now GPR5 contains the

t_data value
ai 5,5,14
stu 5, t_data[TD](RTOC)
br
.toc
.comm t_data[TD],4 # t_data is a global symbol

c. Instructions for making executable td2 from the C and assembler source:

450 Assembler Language Reference

as -o mod2.o mod2.s
cc -o td2 td2.c mod2.o

d. Running td2 will cause the following to be printed:
t_data is 1248

Related Information
Pseudo-ops Overview.

The .align pseudo-op, .csect pseudo-op, .globl pseudo-op, .lcomm pseudo-op, .long pseudo-op.

.csect Pseudo-op

Purpose
Groups code or data into a control section (csect) and gives that csect a name, a storage mapping class,
and an alignment.

Syntax

.csect QualName[, Number]

where QualName = [Name][[StorageMappingClass]]

Note: The boldfaced brackets containing StorageMappingClass are part of the syntax and do not
specify an optional parameter.

Description
The following information discusses using the .csect pseudo-op:

v A csect QualName parameter takes the form:
symbol[XX]

OR

symbol{XX}

where either the [] (square brackets) or { } (curly brackets) surround a two- or three-character storage
mapping class identifier. Both types of brackets produce the same results.

The QualName parameter can be omitted. If it is omitted, the csect is unnamed and the [PR]
StorageMappingClass is used. If a QualName is used, the Name parameter is optional and the
StorageMappingClass is required. If no Name is specified, the csect is unnamed.

Each control section has a storage mapping class associated with it that is specified in the qualification
part of QualName. The storage mapping class determines the object data section, specifically the .text,
.data, or .bss section, in which the control section is grouped. The .text section contains read-only
data. The .data and .bss sections contain read/write data.

The storage mapping class also indicates what kind of data should be contained within the control
section. Many of the storage mapping classes listed have specific implementation and convention
details. In general, instructions can be contained within csects of storage mapping class PR. Modifiable
data can be contained within csects of storage mapping class RW.

Chapter 9. Pseudo-ops 451

A csect is associated with one of the following storage mapping classes. Storage mapping class
identifiers are not case-sensitive. The storage mapping class identifiers are listed in groups for the .text,
.data, and .bss object data sections.

.text Section Storage Mapping Classes
PR Program Code. Identifies the sections that provide executable instructions for the module.
RO Read-Only Data. Identifies the sections that contain constants that are not modified during execution.
DB Debug Table. Identifies a class of sections that have the same characteristics as read-only data.
GL Glue Code. Identifies a section that has the same characteristics as Program Code. This type of

section has code to interface with a routine in another module. Part of the interface code requirement
is to maintain TOC addressability across the call.

XO Extended Operation. Identifies a section of code that has no dependency on the TOC (no references
through the TOC). It is intended to reside at a fixed address in memory so that it can be the target of
a branch to an absolute address.

Note: This storage mapping class should not be used in assembler source programs.
SV Supervisor Call. Identifies a section of code that is to be treated as a supervisor call.
TB Traceback Table. Identifies a section that contains data associated with a traceback table.
TI Traceback Index. Identifies a section that contains data associated with a traceback index.

.data Section Storage Mapping Classes
TC0 TOC Anchor used only by the predefined TOC symbol. Identifies the special symbol TOC. Used only

for the TOC anchor.
TC TOC Entry. Generally indicates a csect that contains addresses of other csects or global symbols. If

it contains only one address, the csect is usually four bytes long.

TD TOC Entry. Identifies a csect that contains scalar data that can be directly accessed from
the TOC. For frequently used global symbols, this is an alternative to indirect access
through an address pointer csect within the TOC. By convention, TD sections should not be
longer than four bytes. Contains initialized data that can be modified during program
execution.

UA Unknown Type. Identifies a section that contains data of an unknown storage mapping class.
RW Read/Write Data. Identifies a section that contains data that is known to require change during

execution.
DS Descriptor. Identifies a function descriptor. This information is used to describe function pointers in

languages such as C and FORTRAN.

.bss Section Storage Mapping Classes
BS BSS class. Identifies a section that contains uninitialized read/write data.
UC Unnamed FORTRAN Common. Identifies a section that contains read/write data.

A csect is one of the following symbol types:
ER External Reference
SD CSECT Section Definition
LD Entry Point - Label Definition
CM Common (BSS)

v All of the control sections with the same QualName value are grouped together, and a section can be
continued with a .csect statement having the same QualName. Different csects can have the same
name and different storage mapping classes. Therefore, the storage mapping class identifier must be
used when referring to a csect name as an operand of other pseudo-ops or instructions.

However, for a given name, only one csect can be externalized. If two or more csects with the same
name are externalized, a run error may occur, since the linkage editor treats the csects as duplicate
symbol definitions and selects only one of them to use.

v A control section is relocated as a body.

452 Assembler Language Reference

v Control sections with no specified name (Name) are identified with their storage mapping class, and
there can be an unnamed control section of each storage mapping class. They are specified with a
QualName that only has a storage mapping class (for instance, .csect [RW] has a QualName of [RW]).

v If no .csect pseudo-op is specified before any instructions appear, then an unnamed Program Code
([PR]) control section is assumed.

v A csect with the BS or UC storage mapping class will have a csect type of CM (Common), which
reserves spaces but has no initialized data. All other control sections defined with the .csect pseudo-op
are of type SD (Section Definition). The .comm or .lcomm pseudo-ops can also be used to define
control sections of type CM. No external label can be defined in a control section of type CM.

v Do not label .csect statements. The .csect may be referred to by its QualName, and labels may be
placed on individual elements of the .csect.

Parameters

Number Specifies an absolute expression that evaluates to an integer value from 0 to 31, inclusive. This value
indicates the log base 2 of the desired alignment. For example, an alignment of 8 (a doubleword)
would be represented by an integer value of 3; an alignment of 2048 would be represented by an
integer value of 11. This is similar to the usage of the Number parameter for the .align pseudo-op.
Alignment occurs at the beginning of the csect. Elements of the csect are not individually aligned.
The Number parameter is optional. If it is not specified, the default value is 2.

QualName Specifies a Name and StorageMappingClass for the control section. If Name is not given, the csect is
identified with its StorageMappingClass. If neither the Name nor the StorageMappingClass are given,
the csect is unnamed and has a storage mapping class of [PR]. If the Name is specified, the
StorageMappingClass must also be specified.

Examples
The following example defines three csects:
A csect of name proga with Program Code Storage Mapping Class.
.csect proga[PR]
lh 30,0x64(5)
A csect of name pdata_ with Read-Only Storage Mapping Class.
.csect pdata_[RO]

l1: .long 0x7782
l2: .byte 'a,'b,'c,'d,'e
.csect [RW],3 # An unnamed csect with Read/Write

Storage Mapping Class and doubleword
alignment.

.float -5

Related Information
Pseudo-ops Overview.

The .comm pseudo-op, .globl pseudo-op, .lcomm pseudo-op, .align pseudo-op.

.double Pseudo-op

Purpose
Stores a double floating-point constant at the next fullword location.

Syntax

.double FloatingConstant

Chapter 9. Pseudo-ops 453

Parameters

FloatingConstant Specifies a floating-point constant to be assembled.

Examples
The following example demonstrates the use of the .double pseudo-op:
.double 3.4
.double -77
.double 134E12
.double 5e300
.double 0.45

Related Information
Pseudo-ops Overview.

The .float pseudo-op.

.drop Pseudo-op

Purpose
Stops using a specified register as a base register.

Syntax

.drop Number

Description
The .drop pseudo-op stops a program from using the register specified by the Number parameter as a
base register in operations. The .drop pseudo-op does not have to precede the .using pseudo-op when
changing the base address, and the .drop pseudo-op does not have to appear at the end of a program.

Parameters

Number Specifies an expression that evaluates to an integer from 0 to 31 inclusive.

Examples
The following example demonstrates the use of the .drop pseudo-op:
.using _subrA,5

Register 5 can now be used for addressing
with displacements calculated
relative to _subrA.

.using does not load GPR 5 with the address
of _subrA. The program must contain the
appropriate code to ensure this at runtime.

.

.

.
.drop 5

Stop using Register 5.
.using _subrB,5

Now the assembler calculates
displacements relative to _subrB

454 Assembler Language Reference

Related Information
Pseudo-ops Overview.

The .using pseudo-op.

.dsect Pseudo-op

Purpose
Identifies the beginning or the continuation of a dummy control section.

Syntax

.dsect Name

Description
The .dsect pseudo-op identifies the beginning or the continuation of a dummy control section. Actual data
declared in a dummy control section is ignored; only the location counter is incremented. All labels in a
dummy section are considered to be offsets relative to the beginning of the dummy section. A dsect that
has the same name as a previous dsect is a continuation of that dummy control section.

The .dsect pseudo-op can declare a data template that can then be used to map out a block of storage.
The .using pseudo-op is involved in doing this.

Parameters

Name Specifies a dummy control section.

Examples
1. The following example demonstrates the use of the .dsect pseudo-op:

.dsect datal
d1: .long 0

1 Fullwordd2: .short 0,0,0,0,0,0,0,0,0,0 # 10 Halfwords
d3: .byte 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 # 15 bytes

.align 3 #Align to a double word.
d4: .space 64 #Space 64 bytes

.csect main[PR]

.using datal,7
l 5,d2

This will actually load
the contents of the
effective address calculated
by adding the offset d2 to
that in GPR 7 into GPR 5.

2. The following example contains several source programs which together show the use of .dsect and
.using pseudo-ops in implicit-based addressing.

a. Source program foo_pm.s:
.csect foo_data[RW]
.long 0xaa
.short 10
.short 20

Chapter 9. Pseudo-ops 455

.globl .foo_pm[PR]

.csect .foo_pm[PR]

.extern l1

.using TOC[TC0], 2
l 7, T.foo_data
b l1
br
.toc

T.foo_data: .tc foo_data[TC], foo_data[RW]

b. Source program bar_pm.s:
.csect bar_data[RW]
.long 0xbb
.short 30
.short 40
.globl .bar_pm[PR]
.csect .bar_pm[PR]
.extern l1
.using TOC[TC0], 2
l 7, T.bar_data
b l1
br
.toc

T.bar_data: .tc bar_data[TC], bar_data[RW]

c. Source program c1_s:
.dsect data1

d1: .long 0
d2: .short 0
d3: .short 0

.globl .c1[PR]

.csect .c1[PR]

.globl l1
l1: .using data1, 7

l 5, d1
stu 5, t_data[TD](2)
br # this br is necessary.

without it, prog hangs
.toc
.comm t_data[TD],4

d. Source for main program mm.c:
extern long t_data;
main()
{

int sw;
sw = 2;
if (sw == 2) {

foo_pm();
printf ("when sw is 2, t_data is 0x%x\n", t_data);

}
sw = 1;
if (sw == 1) {

bar_pm();
printf ("when sw is 1, t_data is 0x%x\n", t_data);

}
}

e. Instructions for creating the executable file from the source:
as -o foo_pm.o foo_pm.s
as -o bar_pm.o bar_pm.s
as -o c1.o c1.s
cc -o mm mm.c foo_pm.o bar_pm.o c1.o

f. The following is printed if mm is executed:
when sw is 2, t_data is 0xaa
when sw is 1, t_data is 0xbb

456 Assembler Language Reference

Related Information
Pseudo-ops Overview.

The .csect pseudo-op, .using pseudo-op.

.eb Pseudo-op

Purpose
Identifies the end of an inner block and provides additional information specific to the end of an inner
block.

Syntax

.eb Number

Description
The .eb pseudo-op identifies the end of an inner block and provides symbol table information necessary
when using the symbolic debugger.

The .eb pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

Number Specifies a line number in the original source file on which the inner block ends.

Examples
The following example demonstrates the use of the .eb pseudo-op:
.eb 10

Related Information
Pseudo-ops Overview.

The .bb pseudo-op.

.ec Pseudo-op

Purpose
Identifies the end of a common block and provides additional information specific to the end of a common
block.

Syntax
.ec

Description
The .ec pseudo-op identifies the end of a common block and provides symbol table information necessary
when using the symbolic debugger.

The .ec pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Chapter 9. Pseudo-ops 457

Examples
The following example demonstrates the use of the .ec pseudo-op:

.bc "commonblock"

.ec

Related Information
Pseudo-ops Overview.

The .bc pseudo-op.

.ef Pseudo-op

Purpose
Identifies the end of a function and provides additional information specific to the end of a function.

Syntax

.ef Number

Description
The .ef pseudo-op identifies the end of a function and provides symbol table information necessary when
using the symbolic debugger.

The .ef pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

Number Specifies a line number in the original source file on which the function ends.

Examples
The following example demonstrates the use of the .ef pseudo-op:
.ef 10

Related Information
Pseudo-ops Overview.

The .bf pseudo-op.

.ei Pseudo-op

Purpose
Identifies the end of an included file and provides additional information specific to the end of an included
file.

Syntax
.ei

458 Assembler Language Reference

Description
The .ei pseudo-op identifies the end of an included file and provides symbol table information necessary
when using the symbolic debugger.

The .ei pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Examples
The following example demonstrates the use of the .ei pseudo-op:
.ei "file.s"

Related Information
Pseudo-ops Overview.

The .bi pseudo-op.

.es Pseudo-op

Purpose
Identifies the end of a static block and provides additional information specific to the end of a static block.

Syntax
.es

Description
The .es pseudo-op identifies the end of a static block and provides symbol table information necessary
when using the symbolic debugger.

The .es pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Examples
The following example demonstrates the use of the .es pseudo-op:
.lcomm cgdat, 0x2b4
.csect .text[PR]
.bs cgdat

.stabx "ONE:1=Ci2,0,4;",0x254,133,0

.stabx "TWO:S2=G5TWO1:3=Cc5,0,5;,0,40;;",0x258,133,8

.es

Related Information
Pseudo-ops Overview.

The .bs pseudo-op.

.extern Pseudo-op

Purpose
Identifies a symbol defined in another source module.

Chapter 9. Pseudo-ops 459

Syntax

.extern Name

Description
The .extern instruction identifies the Name value as a symbol defined in another source module, and
Name becomes an external symbol. Any external symbols used in the current assembly that are not
defined in the current assembly must be declared with an .extern statement. A locally defined symbol that
appears in an .extern statement is equivalent to using that symbol in a .globl statement. A symbol not
locally defined that appears in a .globl statement is equivalent to using that symbol in an .extern
statement. An undefined symbol is flagged as an error unless the -u flag of the as command is used.

Parameters

Name Specifies an operand that is an external symbol and that can be a Qualname. (A Qualname parameter
specifies the Name and StorageMappingClass values for the control section.)

Examples
The following example demonstrates the use of the .extern pseudo-op:

.extern proga[PR]

.toc
T.proga: .tc proga[TC],proga[PR]

Related Information
Pseudo-ops Overview.

The .csect pseudo-op, .globl pseudo-op.

.file Pseudo-op

Purpose
Identifies a source file name.

Syntax

.file StringConstant

Description
The .file pseudo-op provides symbol table information necessary for the use of the symbolic debugger and
linkage editor. The .file pseudo-op also provides the intended target environment and source language
type for the use of the link editor.

For cascade compilers, the .file pseudo-op has no other effect on assembly and is customarily inserted by
the compiler.

It is recommended that the .file pseudo-op be placed at the beginning of the source code for assembly
language programs. If the .file pseudo-op is omitted from the source code, the assembler processes the
program as if the .file pseudo-op were the first statement. The assembler does this by creating an entry in
the symbol table with the source program name as the file name. If the source is standard input, the file
name will be noname. The assembler listing will not have this inserted entry.

460 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTC2780F1469JEFF

Parameters

StringConstant Specifies the file name of the original source file.

Examples
1. To use a source file named main.c, enter:

.file "main.c"

2. To use a source file named asml.s, enter:
.file "asml.s"

Related Information
Pseudo-ops Overview.

The .function pseudo-op.

.float Pseudo-op

Purpose
Stores a floating-point constant at the next fullword location.

Syntax

.float FloatingConstant

Description
The .float stores a floating-point constant at the next fullword location. Fullword alignment occurs if
necessary.

Parameters

FloatingConstant Specifies a floating-point constant to be assembled.

Examples
The following example demonstrates the use of the .float pseudo-op:
.float 3.4
.float -77
.float 134E-12

Related Information
Pseudo-ops Overview.

The .double pseudo-op.

.function Pseudo-op

Purpose
Identifies a function and provides additional information specific to the function.

Chapter 9. Pseudo-ops 461

Syntax

.function Name, Expression1, Expression2, Expression3,[Expression4]

Description
The .function pseudo-op identifies a function and provides symbol table information necessary for the use
of the symbolic debugger.

The .function pseudo-op has no other effect on assembly and is customarily inserted by a compiler.

Parameters

Name Represents the function Name and should be defined as a symbol or control section (csect)
Qualname in the current assembly. (A Qualname specifies a Name and StorageMappingClass
for the control section.)

Expression1 Represents the top of the function.
Expression2 Represents the storage mapping class of the function.
Expression3 Represents the type of the function.

The third and fourth parameters to the .function pseudo-op serve only as place holders. These
parameters are retained for downward compatibility with previous systems (RT, System V).

Expression4 Represents the size of the function (in bytes). This parameter must be an absolute expression.
This parameter is optional.

Note: If the Expression4 parameter is omitted, the function size is set to the size of the
csect to which the function belongs. A csect size is equal to the function size only if the
csect contains one function and the beginning and end of the csect are the same as the
beginning and end of the function.

Examples
The following example illustrates the use of the .function pseudo-op:
.globl .hello[pr]
.csect .hello[pr]
.function .hello[pr],L.1B,16,044,0x86
L.1B:

Related Information
Pseudo-ops Overview.

The .bf pseudo-op, .ef pseudo-op, .file pseudo-op.

.globl Pseudo-op

Purpose
Makes a symbol globally visible to the linker.

Syntax

.globl Name

462 Assembler Language Reference

Description
The .globl pseudo-op makes the symbol Name globally visible to the linker and available to any file that is
linked to the file in which the .globl pseudo-op occurs.

v If the .globl pseudo-op is not used for a symbol, then that symbol is, unless otherwise effected, only
visible within the current assembly and not to other modules that may later be linked to the current
assembly. Alternately, the .extern pseudo-op can be used to effect visibility.

v If Name is defined in the current assembly, its type and value arise from that definition, not the .globl
definition.

v The binder maps all common segments with the same name into the same memory. If the name is
declared .globl and defined in one of the segments, this has the same effect as declaring the common
symbols to be .globl in all segments. In this way, common memory can be initialized.

Parameters

Name Represents any label or symbol that is defined locally and requires external visibility. This parameter can be
a Qualname. (A Qualname specifies a Name and StorageMappingClass for the control section.)

Examples
The following example illustrates the use of the .globl pseudo-op:

.globl main
main:

.csect data[rw]

.globl data[rw]

Related Information
Pseudo-ops Overview.

The .comm pseudo-op, .extern pseudo-op.

.hash Pseudo-op

Purpose
Associates a hash value with an external symbol.

Syntax

.hash Name, StringConstant

Description
The hash string value contains type-checking information. It is used by the link-editor and program loader
to detect variable mismatches and argument interface errors prior to the execution of a program.

Hash string values are usually generated by compilers of strongly typed languages. The hash value for a
symbol can only be set once in an assembly. See Type-Check Section in the XCOFF Object (a.out) File
Format for more information on type encoding and checking.

Parameters

Name Represents a symbol. Because this should be an external symbol, Name should appear
in an .extern or .global statement.

Chapter 9. Pseudo-ops 463

../../files/aixfiles/XCOFF.htm#HDRRL2WHFCSHAR

StringConstant Represents a type-checking hash string value. This parameter consists of characters that
represent a hexadecimal hash code and must be in the set [0-9A-F] or [0-9a-f].

A hash string comprises the following three fields:

v Language Identifier is a 2-byte field representing each language. The first byte is 0x00.
The second byte contains predefined language codes that are the same as those listed
in the .source pseudo-op.

v General Hash is a 4-byte field representing the most general form by which a data
symbol or function can be described. It is the greatest common denominator among
languages supported by AIX. A universal hash can be used for this field.

v Language Hash is a 4-byte field containing a more detailed, language-specified
representation of data symbol or function.

Note: A hash string must have a length of 10 bytes. Otherwise, a warning message
is reported when the -w flag is used. Since each character is represented by two
ASCII codes, the 10-byte hash character string is represented by a string of 20
hexadecimal digits.

Examples
The following example illustrates the use of the .hash pseudo-op:

.extern b[pr]

.extern a[pr]

.extern e[pr]

.hash b[pr],"0000A9375C1F51C2DCF0"

.hash a[pr],"ff0a2cc12365de30" # warning may report

.hash e[pr],"00002020202051C2DCF0"

Related Information
Pseudo-ops Overview.

Type-Check Section in XCOFF Object (a.out) File Format.

The .extern pseudo-op, .globl pseudo-op.

.lcomm Pseudo-op

Purpose
Defines a local uninitialized block of storage.

Syntax

.lcomm Name1, Expression[, Name2]

Description
The .lcomm pseudo-op defines a local uninitialized block of storage called a local common (LC) section.
At run time, this storage block will be reserved when the LC section is allocated at the end of the .data
section. This storage block is for uninitialized data.

Use the .lcomm pseudo-op with local uninitialized data, which is data that will probably not be accessed
outside the local assembly.

464 Assembler Language Reference

../../files/aixfiles/XCOFF.htm#HDRRL2WHFCSHAR

The symbol Name1 is a label at the top of the local uninitialized block of storage. The location counter for
this LC section is incremented by the Expression parameter. A specific LC section can be specified by the
Name2 parameter. Otherwise an unnamed section is used.

Parameters

Name1 Represents a relocatable symbol. The symbol Name1 is a label at the top of the local
uninitialized block of storage. Name1 does not appear in the symbol table unless it is the
operand of a .globl statement.

Expression Represents an absolute expression that is defined in the first pass of the assembler. The
Expression parameter also increments the location counter for the LC section.

Name2 Represents a control section (csect) name that has storage mapping class BS and storage type
CM. The Name2 parameter allows the programmer to specify the BS csect for the allocated
storage. If a specific LC section is not specified by the Name2 parameter, an unnamed section is
used.

Examples
1. To set up 5KB of storage and refer to it as buffer:

.lcomm buffer,5120
Can refer to this 5K
of storage as "buffer".

2. To set up a label with the name proga:
.lcomm b3,4,proga

b3 will be a label in a csect of class BS
and type CM with name "proga".

Related Information
Pseudo-ops Overview.

The .comm pseudo-op.

.lglobl Pseudo-op

Purpose
Provides a means to keep the information of a static name in the symbol table.

Syntax

.lglobl Name

Description
A static label or static function name defined within a control section (csect) must be kept in the symbol
table so that the static label or static function name can be referenced. This symbol has a class of ″hidden
external″ and differs from a global symbol. The .lglobl pseudo-op gives the symbol specified by the Name
parameter have a symbol type of LD and a class of C_HIDEXT.

Note: The .lglobl pseudo-op does not have to apply to any csect name. The assembler automatically
generates the symbol table entry for any csect name with a class of C_HIDEXT unless there is an
explicit .globl pseudo-op applied to the csect name. If an explicit .globl pseudo-op applies to the
csect name, the symbol table entry class for the csect is C_EXT.

Chapter 9. Pseudo-ops 465

Parameters

Name Specifies a static label or static function name that needs to be kept in the symbol table.

Examples
The following example demonstrates the use of the .lglobl pseudo-op:

.toc

.file "test.s"

.lglobl .foo

.csect foo[DS]
foo:

.long .foo,TOC[tc0],0

.csect [PR]
.foo:

.stabx "foo:F-1",.foo,142,0

.function .foo,.foo,16,044,L..end_foo-.foo

.

.

.

>

Related Information
Pseudo-ops Overview.

The .function pseudo-op, .globl pseudo-op.

.line Pseudo-op

Purpose
Identifies a line number and provides additional information specific to the line number.

Syntax

.line Number

Description
The .line pseudo-op identifies a line number and is used with the .bi pseudo-op to provide a symbol table
and other information necessary for use of the symbolic debugger.

This pseudo-op is customarily inserted by a compiler and has no other effect on assembly.

Parameters

Number Represents a line number of the original source file.

Examples
The following example illustrates the use of the .line pseudo-op:
.globl .hello[pr]
.csect .hello[pr]
.align 1
.function .hello[pr],L.1B,16,044

466 Assembler Language Reference

.stabx "hello:f-1",0,142,0

.bf 2

.line 1

.line 2

Related Information
Pseudo-ops Overview.

The .bi pseudo-op, .bf pseudo-op, .function pseudo-op.

.long Pseudo-op

Purpose
Assembles expressions into consecutive fullwords.

Syntax

.long Expression[,Expression,...]

Description
The .long pseudo-op assembles expressions into consecutive fullwords. Fullword alignment occurs as
necessary.

Parameters

Expression Represents any expression to be assembled into fullwords.

Examples
The following example illustrates the use of the .long pseudo-op:
.long 24,3,fooble-333,0

Related Information
Pseudo-ops Overview.

The .byte pseudo-op, .short pseudo-op, .vbyte pseudo-op.

.llong Pseudo-op

Purpose
Assembles expressions into consecutive double-words.

Syntax

.llong Expression[,Expression,...]

Description
The .llong pseudo-op assembles expressions into consecutive double-words. In 32-bit mode, alignment
occurs on fullword boundaries as necessary. In 64-bit mode, alignment occurs on double-word boundaries
as necessary.

Chapter 9. Pseudo-ops 467

Parameters

Expression Represents any expression to be assembled into fullwords/double-words.

Examples
The following example illustrates the use of the .llong pseudo-op:
.extern fooble
.llong 24,3,fooble-333,0

which fills 4 double-words, or 32 bytes, of storage.

Related Information
Pseudo-ops Overview.

The .byte pseudo-op, .short pseudo-op, .vbyte pseudo-op, .long pseudo-op.

.machine Pseudo-op

Purpose
Defines the intended target environment.

Syntax

.machine StringConstant

Description
The .machine pseudo-op selects the correct instruction mnemonics set for the target machine. It provides
symbol table information necessary for the use of the linkage editor. The .machine pseudo-op overrides
the setting of the as command’s -m flag, which can also be used to specify the instruction mnemonics set
for the target machine.

The .machine pseudo-op can occur in the source program more than once. The value specified by a
.machine pseudo-op overrides any value specified by an earlier .machine pseudo-op. It is not necessary
to place the first .machine pseudo-op at the beginning of a source program. If no .machine pseudo-op
occurs at the beginning of a source program and the -m flag is not used with the as command, the default
assembly mode is used. The default assembly mode is overridden by the first .machine pseudo-op.

If a .machine pseudo-op specifies a value that is not valid, an error is reported. As a result, the last valid
value specified by the default mode value, the -m flag, or a previous .machine pseudo-op is used for the
remainder of the instruction validation in the assembler pass one.

468 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTBEFF691050JEFF

Parameters

StringConstant Specifies the assembly mode. This parameter is not case-sensitive, and can be any of
the values which can be specified with the -m flag on the command line. Possible values,
enclosed in quotation marks, are:

Null string (″″) or nothing
Specifies the default assembly mode. A source program can contain only
instructions that are common to both POWER family and PowerPC. Any other
instruction causes an error.

This mode is new beginning with the AIX 4.1 assembler.

push Saves the current assembly mode in the assembly mode pushdown stack.

pop Removes a previously saved value from the assembly mode pushdown stack
and restore the assembly mode to this saved value.

Note: The intended use of push and pop is inside of include files which
alter the current assembly mode. .machine ″push″ should be used in the
included file, before it changes the current assembly mode with another
.machine. Similarly, .machine ″pop″ should be used at the end of the
included file, to restore the input assembly mode.

Attempting to hold more than 100 values in the assembly mode pushdown
stack will result in an assembly error. The pseudo-ops .machine ″push″
and .machine ″pop″ are used in pairs.

ppc Specifies the PowerPC common architecture, 32-bit mode. A source program
can contain only PowerPC common architecture, 32-bit instructions. Any other
instruction causes an error.

ppc64 Specifies the PowerPC 64-bit mode. A source program can contain only
PowerPC 64-bit instructions. Any other instruction causes an error.

com Specifies the POWER family and PowerPC architecture intersection mode. A
source program can contain only instructions that are common to both POWER
family and PowerPC. Any other instruction causes an error.

pwr Specifies the POWER family architecture, POWER family implementation mode.
A source program can contain only instructions for the POWER family
implementation of the POWER family architecture. Any other instruction causes
an error.

pwr2 POWER family architecture, POWER2 implementation. A source program can
contain only instructions for the POWER2 implementation of the POWER family
architecture. Any other instruction causes an error. (pwr2 is the preferred value,
but the alternate value pwrx can also be used.)

Chapter 9. Pseudo-ops 469

any Any nonspecific POWER family/PowerPC architecture or implementation mode.
This includes mixtures of instructions from any of the valid architectures or
implementations.

601 Specifies the PowerPC architecture, PowerPC 601 RISC Microprocessor mode.
A source program can contain only instructions for the PowerPC architecture,
PowerPC 601 RISC Microprocessor. Any other instruction causes an error.

Attention: It is recommended that the 601 assembly mode not be used for
applications that are intended to be portable to future PowerPC systems.
The com or ppc assembly mode should be used for such applications.

The PowerPC 601 RISC Microprocessor implements the PowerPC architecture,
plus some POWER family instructions which are not included in the PowerPC
architecture. This allows existing POWER family applications to run with
acceptable performance on PowerPC systems. Future PowerPC systems will not
have this feature. The 601 assembly mode may result in applications that will not
run on existing POWER family systems and that may not have acceptable
performance on future PowerPC systems, because the 601 assembly mode
permits the use of all the instructions provided by the PowerPC 601 RISC
Microprocessor.

603 Specifies the PowerPC architecture, PowerPC 603 RISC Microprocessor mode.
A source program can contain only instructions for the PowerPC architecture,
PowerPC 603 RISC Microprocessor. Any other instruction causes an error.

604 Specifies the PowerPC architecture, PowerPC 604 RISC Microprocessor mode.
A source program can contain only instructions for the PowerPC architecture,
PowerPC 604 RISC Microprocessor. Any other instruction causes an error.

A35 Specifies the A35 mode. A source program can contain only instructions for the
A35. Any other instruction causes an error.

Note: See as Command Flags for more information on assembly mode values.

Examples
1. To set the target environment to POWER family architecture, POWER family implementation:

.machine "pwr"

2. To set the target environment to any non-specific POWER family/PowerPC architecture or
implementation mode:
.machine "any"

3. To explicitly select the default assembly mode:
.machine ""

4. The following example of assembler output for a fragment of code shows the usage of .machine
″push″ and .machine ″pop″:
push1.s V4.1 04/15/94
File# Line# Mode Name Loc Ctr Object Code Source
0 1 | .machine "pwr2"
0 2 | .csect longname1[PR]
0 3 | PWR2 longna 00000000 0000000a .long 10
0 4 | PWR2 longna 00000004 329e000a ai 20,30,10
0 5 | PWR2 longna 00000008 81540014 l 10, 20(20)
0 6 | .machine "push"
0 7 | .machine "ppc"
0 8 | .csect a2[PR]
0 9 | PPC a2 00000000 7d4c42e6 mftb 10
0 10 | .machine "pop"
0 11 | PWR2 a2 00000004 329e000a ai 20,30,10
0 12 |

470 Assembler Language Reference

Related Information
Host Machine Independence and Target Environment Indicator Flag .

Assembling with the as Command .

.org Pseudo-op

Purpose
Sets the value of the current location counter.

Syntax

.org Expression

Description
The .org pseudo-op sets the value of the current location counter to Expression. This pseudo-op can also
decrement a location counter. The assembler is control section (csect) oriented; therefore, absolute
expressions or expressions that cause the location counter to go outside of the current csect are not
allowed.

Parameters

Expression Represents the value of the current location counter.

Examples
The following example illustrates the use of the .org pseudo-op:
Assume assembler location counter is 0x114.
.org $+100
#Skip 100 decimal byte (0x64 bytes).
.
.
Assembler location counter is now 0x178.

Related Information
Pseudo-ops Overview.

The .space pseudo-op.

.quad Pseudo-op

Purpose
Stores a quad floating-point constant at the next fullword location. Alignment requirements for floating-point
data are consistent between 32-bit and 64-bit modes.

Syntax

.quad FloatingConstant

Chapter 9. Pseudo-ops 471

Examples
The following example demonstrates the use of the .quad pseudo-op:
.quad 3.4
.quad -77
.quad 134E12
.quad 5e300
.quad 0.45

The above declarations would reserve 16 bytes of storage each.

Related Information
Pseudo-ops Overview.

The .float pseudo-op , .double pseudo-op .

.ref Pseudo-op

Purpose
Creates a R_REF type entry in the relocation table for one or more symbols.

Syntax
.ref Name[,Name...]

Description
The .ref pseudo-op supports the creation of multiple RLD entries in the same location. This psuedo-op is
used in the output of some compilers to ensure the linkage editor does not discard routines that are used
but not referenced explicitly in the text or data sections.

For example, in C++, constructors and destructors are used to construct and destroy class objects.
Constructors and destructors are sometimes called only from the run-time environment without any explicit
reference in the text section.

The following rules apply to the placement of a .ref pseudo-op in the source program:

v The .ref pseudo-op cannot be included in a dsect or csect with a storage mapping class of BS or UC.

v The .ref pseudo-op cannot be included in common sections or local common sections.

The following rules apply to the operands of the .ref pseudo-op (the Name parameter):

v The symbol must be defined in the current source module.

v External symbols can be used if they are defined by .extern or .globl.

v Within the current source module, the symbol can be a csect name (meaning a Qualname) or a label
defined in the csect.

v The following symbols cannot be used for the .ref operand:

– pseudo-op .dsect names

– labels defined within a dsect

– a csect name with a storage mapping class of BS or UC

– labels defined within a csect with a storage mapping class of BS or UC

– a pseudo-op .set Name operand which represents a non-relocatable expression type

472 Assembler Language Reference

Parameters

Name Specifies a symbol for which a R_REF type entry in the relocation table should be created.

Examples
The following example demonstrates the use of the .ref pseudo-op:

.csect a1[pr]
C1: l 10, 20(20)

.long 0xff

.csect a2[pr]

.set r10,10

.extern C4
C2: .long 10
C3: .long 20

.ref C1,C2,C3

.ref C4

Related Information
Pseudo-ops Overview.

The discussion of opposite terms concepts in Combination Handling of Expressions . (This discusses
another way to generate a R_REF type entry in the relocation table.)

.rename Pseudo-op

Purpose
Creates a synonym or alias for an illegal or undesirable name.

Syntax

.rename Name, StringConstant

Description
The restrictions on the characters that can be used for symbols within an assembler source file are
defined in Constructing Symbols . The symbol cannot contain any blanks or special characters, and cannot
begin with a digit.

For any external symbol that must contain special characters, the .rename pseudo-op provides a way to
do so.

The .rename pseudo-op changes the Name parameter to the StringConstant value for all external
references at the end of assembly. Internal references to the local assembly are made to Name. The
externally visible Name is StringConstant. The .rename pseudo-op is useful in referencing symbol names
that are otherwise illegal in the assembler syntax.

Parameters

Name Represents a symbol. To be externally visible, the Name parameter must appear in an
.extern or .globl statement.

StringConstant Represents the value to which the Name parameter is changed at end of assembly.

Chapter 9. Pseudo-ops 473

Examples
The following example illustrates the use of the .rename pseudo-op:

.csect mst_sect[RW]

.globl mst_sect[RW]
OK_chars:

.globl OK_chars

.long OK_chars

.rename OK_chars,"$_SPECIAL_$_char"

.rename mst_sect[RW],"MST_sect_renamed"

Related Information
Constructing Symbols .

The .extern pseudo-op, .globl pseudo-op.

.set Pseudo-op

Purpose
Sets a symbol equal to an expression in both type and value.

Syntax

.set Name, Expression

Description
The .set pseudo-op sets the Name symbol equal to the Expression value in type and in value. Using the
.set pseudo-op may help to avoid errors with a frequently used expression. Equate the expression to a
symbol, then refer to the symbol rather than the expression. To change the value of the expression, only
change it within the .set statement. However, reassembling the program is necessary since .set
assignments occur only at assembly time.

The Expression parameter is evaluated when the assembler encounters the .set pseudo-op. This
evaluation is done using the rules in Combination Handling of Expressions ; and the type and value of the
evaluation result are stored internally. If evaluating the Expression, results in an invalid type, all
instructions which use the symbol Name will have an error.

The stored type and value for symbol Name, not the original expression definition, are used when Name is
used in other instructions.

Parameters

Name Represents a symbol that may be used before its definition in a .set statement; forward
references are allowed within a module.

Expression Defines the type and the value of the symbol Name. The symbols referenced in the expression
must be defined; forward references are not allowed. The symbols cannot be undefined external
expressions.The symbols do not have to be within the control section where the .set pseudo-op
appears.The Expression parameter can also refer to a register number, but not to the contents of
the register at run time.

Examples
1. The following example illustrates the use of the .set pseudo-op:

474 Assembler Language Reference

.set ap,14 # Assembler assigns value 14
to the symbol ap -- ap
is absolute.

.

.
lil ap,2

Assembler substitutes value 14
for the symbol.
Note that ap is a register
number in context
as lil's operand.

2. The following example will result in an assembly error because of an invalid type:
.csect a1[PR]

L1: l 20,30(10)
.csect a2[rw]
.long 0x20

L2: .long 0x30
.set r1, L2 - L1 # r1 has type of E_REXT

r1 has value of 8
.long r1 + 10
.long L2 - r1 # Error will be reported.

L2 is E_REL
r1 is E_REXT
E_REL - E_REXT ==> Invalid type

Related Information
Pseudo-ops Overview.

Expressions .

.short Pseudo-op

Purpose
Assembles expressions into consecutive halfwords.

Syntax

.short Expression[,Expression,...]

Description
The .short pseudo-op assembles Expressions into consecutive halfwords. Halfword alignment occurs as
necessary.

Parameters

Expression Represents expressions that the instruction assembles into halfwords. The Expression parameter
cannot refer to the contents of any register. If the Expression value is longer than a halfword, it is
truncated on the left.

Examples
The following example illustrates the use of the .short pseudo-op:
.short 1,0x4444,fooble-333,0

Chapter 9. Pseudo-ops 475

Related Information
Pseudo-ops Overview.

The .byte pseudo-op, .long pseudo-op, .vbyte pseudo-op.

.source Pseudo-op

Purpose
Identifies the source language type.

Syntax

.source StringConstant

Description
The .source pseudo-op identifies the source language type and provides symbol table information
necessary for the linkage editor. For cascade compilers, the symbol table information is passed from the
compiler to the assembler to indicate the high-level source language type. The default source language
type is ″Assembler.″

Parameters

StringConstant Specifies a valid program language name. This parameter is not case-sensitive. If the
specified value is not valid, the language ID will be reset to ″Assembler.″ The following
values are defined:

0x00 C

0x01 FORTRAN

0x02 Pascal

0x03 Ada

0x04 PL/1

0x05 BASIC

0x06 LISP

0x07 COBOL

0x08 Modula2

0x09 C++

0x0a RPG

0x0b PL8, PLIX

0x0c Assembler

Examples
To set the source language type to C++:
.source "C++"

476 Assembler Language Reference

Related Information
Pseudo-ops Overview.

Source Language Type .

.space Pseudo-op

Purpose
Skips a specified number of bytes in the output file and fills them with binary zeros.

Syntax

.space Number

Description
The .space skips a number of bytes, specified by Number, in the output file and fills them with binary
zeros. The .space pseudo-op may be used to reserve a chunk of storage in a control section (csect).

Parameters

Number Represents an absolute expression that specifies the number of bytes to skip.

Examples
The following example illustrates the use of the .space pseudo-op:
.csect data[rw]
.space 444

.

.
foo: # foo currently located at offset 0x1BC within

csect data[rw].

Related Information
Pseudo-ops Overview.

.stabx Pseudo-op

Purpose
Provides additional information required by the debugger.

Syntax

.stabx StringConstant, Expression1, Expression2, Expression3

Description
The .stabx pseudo-op provides additional information required by the debugger. The assembler places the
StringConstant argument, which provides required stabstring information for the debugger, in the .debug
section.

The .stabx pseudo-op is customarily inserted by a compiler.

Chapter 9. Pseudo-ops 477

Parameters

StringConstant Provides required Stabstring information to the debugger.
Expression1 Represents the symbol value of the character string. This value is storage mapping class

dependent. For example, if the storage mapping class is C_LSYM, the value is the offset
related to the stack frame. If the storage mapping class is C_FUN, the value is the offset
within the containing control section (csect).

Expression2 Represents the storage class of the character string.
Expression3 Represents the symbol type of the character string.

Examples
The following example illustrates the use of the .stabx pseudo-op:
.stabx "INTEGER:t2=-1",0,140,4

Related Information
Pseudo-ops Overview.

Debug Section in the XCOFF Object (a.out) File Format.

The .function pseudo-op.

.string Pseudo-op

Purpose
Assembles character values into consecutive bytes and terminates the string with a null character.

Syntax

.string StringConstant

Description
The .string pseudo-op assembles the character values represented by StringConstant into consecutive
bytes and terminates the string with a null character.

Parameters

StringConstant Represents a string of character values assembled into consecutive bytes.

Examples
The following example illustrates the use of the .string pseudo-op:
mine: .string "Hello, world!"
This produces
0x48656C6C6F2C20776F726C642100.

Related Information
Pseudo-ops Overview.

The .byte pseudo-op, .vbyte pseudo-op.

478 Assembler Language Reference

../../files/aixfiles/XCOFF.htm#HDRX83WH24FSHAR

.tbtag Pseudo-op

Purpose
Defines a debug traceback tag, preceded by a word of zeros, that can perform tracebacks for debugging
programs.

Syntax
.tbtag Expression1, Expression2, Expression3, Expression4, Expression5, Expression6, Expression7,
Expression8,[Expression9, Expression10, Expression11, Expression12, Expression13, Expression14,
Expression15, Expression16]

Description
The .tbtag pseudo-op defines a traceback tag by assembling Expressions into consecutive bytes, words,
and halfwords, depending on field requirements. An instruction can contain either 8 expressions
(Expression1 through Expression8) or 16 expressions (Expression1 through Expression16). Anything else
is a syntax error. A compiler customarily inserts the traceback information into a program at the end of the
machine instructions, adding a string of zeros to signal the start of the information.

Parameters

Expression1 version /*Traceback format version */
Byte
Expression2 lang /*Language values */
Byte

TB_C 0
TB_FORTRAN 1
TB_PASCAL 2
TB_ADA 3
TB_PL1 4
TB_BASIC 5
TB_LISP 6
TB_COBOL 7
TB_MODULA2 8
TB_CPLUSPLUS 9
TB_RPG 10
TB_PL8 11
TB_ASM 12

Expression3 /*Traceback control bits */
Byte

globallink Bit 7. Set if routine is global linkage.
is_eprol Bit 6. Set if out-of-town epilog/prologue.
has_tboff Bit 5. Set if offset from start of proc stored.
int_proc Bit 4. Set if routine is internal.
has_ctl Bit 3. Set if routine involves controlled storage.
tocless Bit 2. Set if routine contains no TOC.
fp_present Bit 1. Set if routine performs FP operations.
log_abort Bit 0. Set if routine involves controlled storage.

Expression4 /*Traceback control bits (continued) */
Byte

int_hndl Bit 7. Set if routine is interrupt handler.
name_present Bit 6. Set if name is present in proc table.
uses_alloca Bit 5. Set if alloca used to allocate storage.
cl_dis_inv Bits 4, 3, 2. On-condition directives

Chapter 9. Pseudo-ops 479

WALK_ONCOND 0 Walk stack; don’t restore state
DISCARD_ONCOND 1 Walk the stack and discard.
INVOKE_ONCOND 1 Invoke specific system routine

saves_cr Bit 1. Set if procedure saves condition register.
saves_lr Bit 0. Set if procedure saves link register.

Expression5 /*Traceback control bits (continued) */
Byte

stores_bc Bit 7. Set if procedure stores the backchain.
spare2 Bit 6. Spare bit.
fpr_saved Bits 5, 4, 3, 2, 1, 0. Number of FPRs saved, max 32.

Expression6 /*Traceback control bits (continued) */
Byte

spare3 Bits 7, 6. Spare bits.
gpr_saved Bits 5, 4, 3, 2, 1, 0. Number of GPRs saved, max 32.

Expression7 fixedparms /*Traceback control bits (continued) */
Byte
Expression8
Byte

floatparms Bits 7, 6, 5, 4, 3, 2,1. Number of floating point parameters.
parmsonstk Bit 0. Set if all parameters placed on stack.

Expression9 parminfo /*Order and type coding of parameters */
Word

’0’ Fixed parameter.
’10’ Single-precision float parameter.
’11’ Double-precision float parameter.

Expression10 tb_offset /*Offset from start of code to tb table */
Word
Expression11 hand_mask /*What interrupts are handled */
Word
Expression12 ctl_info /*Number of CTL anchors */
Word
Expression13 ctl_info_disp /*Displacements of each anchor into stack*/
Word
Expression14 name_len /*Length of procedure name */
Halfword
Expression15 name /*Name */
Byte
Expression16 alloca_reg /*Register for alloca automatic storage*/
Byte

Examples
The following example illustrates the use of the .tbtag pseudo-op:

.tbtag 1,0,0xff,0,0,16,0,0

Related Information
Traceback Tags .

The .byte pseudo-op.

.tc Pseudo-op

Purpose
Assembles expressions into a Table of Contents (TOC) entry.

480 Assembler Language Reference

Syntax

.tc [Name][TC], Expression[,Expression,...]

Note: The boldface brackets containing TC are part of the syntax and do not specify optional
parameters.

Description
The .tc pseudo-op assembles Expressions into a TOC entry, which contains the address of a routine, the
address of a function descriptor, or the address of an external variable. A .tc statement can only appear
inside the scope of a .toc pseudo-op. A TOC entry can be relocated as a body. TOC entry statements can
have local labels, which will be relative to the beginning of the entire TOC as declared by the first .toc
statement. Addresses contained in the TOC entry can be accessed using these local labels and the TOC
Register GPR 2.

TOC entries that contain only one address are subject to being combined by the binder. This can occur if
the TOC entries have the same name and reference the same control section (csect) (symbol). Be careful
when coding TOC entries that reference nonzero offsets within a csect. To prevent unintended combining
of TOC entries, unique names should be assigned to TOC entries that reference different offsets within a
csect.

Parameters

Name Specifies name of the TOC entry created. The StorageMappingClass is TC for TOC entires.
Name[TC] can be used to refer to the TOC entry where appropriate.

Expression Specifies symbol or expression which goes into TOC entry.

Examples
The following example illustrates the use of the .tc pseudo-op:
.toc
Create three TOC entries, the first
with the name proga, the second
with the name progb, and the last
unnamed.

T.proga: .tc proga[TC],progr[RW],dataA
T.progb: .tc progb[TC],proga[PR],progb[PR]
T.progax: .tc proga[TC],dataB

.tc [TC],dataB

.csect proga[PR]

A .csect should precede any statements following a
.toc/.tc section which do not belong in the TOC.

l 5,T.proga(2) # The address of progr[RW]
is loaded into GPR 5.

l 5,T.progax(2) # The address of progr[RW]
is loaded into GPR 5.

l 5,T.progb+4(2) # The address of progb[PR]
is loaded into GPR 5.

Related Information
Pseudo-ops Overview.

The .csect pseudo-op, .toc pseudo-op, .tocof pseudo-op.

Chapter 9. Pseudo-ops 481

.toc Pseudo-op

Purpose
Defines the table of contents of a module.

Syntax
.toc

Description
The .toc pseudo-op defines the table of contents (TOC) anchor of a module. Entries in the TOC section
can be declared with .tc pseudo-op within the scope of the .toc pseudo-op. The .toc pseudo-op has scope
similar to that of a .csect pseudo-op. The TOC can be continued throughout the assembly wherever a .toc
appears.

Examples
The following example illustrates the use of the .toc pseudo-op:
.toc
Create two TOC entries. The first entry, named proga,
is of type TC and contains the address of proga[RW] and dataA.

The second entry, named progb, is of type TC and contains
the address of progb[PR] and progc[PR].

T.proga: .tc proga[TC],proga[RW],dataA
T.progb: .tc progb[TC],progb[PR],progc[PR]

.csect proga[RW]

A .csect should precede any statements following a .toc/.tc
section which do not belong in the TOC.

.long TOC[tc0]

The address of the TOC for this module is placed in a fullword.

Related Information
The .tc pseudo-op, .tocof pseudo-op.

.tocof Pseudo-op

Purpose
Allows for the definition of a local symbol as the table of contents of an external symbol so that the local
symbol can be used in expressions.

Syntax

.tocof Name1, Name2

Description
The .tocof pseudo-op makes the Name2 value globally visible to the linker and marks the Name1 symbol
as the table of contents (TOC) of another module that contains the symbol Name2. As a result, a local
symbol can be defined as the TOC of an external symbol so that the local symbol can be used in
expressions or to refer to the TOC of another module, usually in a .tc statement. This pseudo-op

482 Assembler Language Reference

generates a Relocation Dictionary entry (RLD) that causes this data to be initialized to the address of the
TOC external symbols. The .tocof pseudo-op can be used for intermodule calls that require the caller to
first load up the address of the called module’s TOC before transferring control.

Parameters

Name1 Specifies a local symbol that acts as the TOC of a module that contains the Name2 value. The Name1
symbol should appear in .tc statements.

Name2 Specifies an external symbol that exists within a module that contains a TOC.

Examples
The following example illustrates the use of the .tocof pseudo-op:
tocbeg: .toc
apb: .tc [tc],pb,tpb
This is an unnamed TOC entry
that contains two addresses:
the address of pb and
the address of the TOC
containing pb.
.tocof tpb,pb
.set always,0x14
.csect [PR]
.using tocbeg,rtoc
l 14,apb
Load R14 with the address
of pb.
l rtoc,apb+4
Load the TOC register with the
address pb's TOC.
mtspr lr,14
Move to Link Register.
bcr always,0
Branch Conditional Register branch
address is contained in the Link
register.

Related Information
Understanding and Programming the TOC .

The .tc pseudo-op, .toc pseudo-op.

.using Pseudo-op

Purpose
Allows the user to specify a base address and assign a base register number.

Syntax

.using Expression, Register

Description
The .using pseudo-op specifies an expression as a base address, and assigns a base register, assuming
that the Register parameter contains the program address of Expression at run time. Symbol names do
not have to be previously defined.

Chapter 9. Pseudo-ops 483

Note: The .using pseudo-op does not load the base register; the programmer should ensure that the
base address is loaded into the base register before using the implicit address reference.

The .using pseudo-op only affects instructions with an implicit-based address. It can be issued on the
control section (csect) name and all labels in the csects. It can also be used on the dsect name and all the
labels in the dsects. Other types of external symbols are not allowed (.extern).

Using Range
The range of a .using pseudo-op (using range) is -32768 or 32767 bytes, beginning at the base address
specified in the .using pseudo-op. The assembler converts each implicit address reference (or
expression), which lies within the using range, to an explicit-based address form. Errors are reported for
references outside the using range.

Two using ranges overlap when the base address of one .using pseudo-op lies within the ranges of
another .using pseudo-op. When using range overlap happens, the assembler converts the implicit
address reference by choosing the smallest signed offset from the base address as the displacement. The
corresponding base register is used in the explicit address form. This applies only to implicit addresses
that appear after the second .using pseudo-op.

In the next example, the using range of base2 and data[PR] overlap. The second l instruction is after the
second .using pseudo-op. Because the offset from data[PR] to d12 is greater than the offset from base2 to
d12, base2 is still chosen.

.csect data[PR]

.long 0x1
dl: .long 0x2
base2: .long 0x3

.long 0x4

.long 0x4

.long 0x5
d12: .long 0x6

l 12, data_block.T(2) # Load addr. of data[PR] into r12
ca1 14, base2(12) # Load addr. of base2 into r14
.using base2, 14
l 4, d12 # Convert to 1 4, 0xc(14)
.using data[PR], 12
l 4, d12 # Converts to 1 4, 0xc(14)

because base2 is still chosen
.toc

data_block.T: tc data_block[tc], data[PR]

There is an internal using table that is used by the assembler to track the .using pseudo-op. Each entry of
the using table points to the csect that contains the expression or label specified by the Expression
parameter of the .using pseudo-op. The using table is only updated by the .using pseudo-ops. The
location of the .using pseudo-ops in the source program influences the result of the conversion of an
implicit-based address. The next two examples illustrate this conversion.

Example 1:
.using label1,4
.using label2,5
.csect data[RW]

label1: .long label1
.long label2
.long 8

label1_a: .long 16
.long 20

label2: .long label2
.long 28
.long 32

label2_a: .long 36
.long 40
.csect sub1[pr]

484 Assembler Language Reference

1 6,label1_a # base address label2 is
chosen, so convert to:
1 6, -8(5)

1 6,label2_a # base address label2 is
chosen, so convert to:
1 6, 0xc(5)

Example 2:
.csect data[RW]

label1: .long label1
.long label2
.long 12

label1_a: .long 16
.long 20

label2: .long label2
.long 28
.csect sub2[pr]
.using label1,4
1 6,label1_a # base address label1 is

chosen, so convert to:
1 6, 0xc(4)

.using label2,5
1 6,label1_a # base address label2 is

chosen, so convert to:
1 6, -8(5)

Two using ranges coincide when the same base address is specified in two different .using pseudo-ops,
while the base register used is different. The assembler uses the lower numbered register as the base
register when converting to explicit-based address form, because the using table is searched from the
lowest numbered register to the highest numbered register. The next example shows this case:

.csect data[PR]

.long 0x1
dl: .long 0x2
base2; .long 0x3

.long 0x4

.long 0x5
dl2: .long 0x6

1 12, data_block.T(2) # Load addr. of data[PR] into r12
1 14, data_block.T(2) # Load addr. of data[PR] into r14
.using data[PR], 12
1 4, dl2 # Convert to: 1 4, 0x14(12)
.using data[PR], 14
1 4, dl2 # Convert to: 1 4, 0x14(12)
.toc

data_block.T: .tc data_block[tc], data[PR]

Using Domain
The domain of a .using pseudo-op (the using domain) begins where the .using pseudo-op appears in a
csect and continue to the end of the source module except when:

v A subsequent .drop pseudo-op specifies the same base register assigned by the preceding .using
pseudo-op.

v A subsequent .using pseudo-op specifies the same base register assigned by the preceding .using
pseudo-op.

These two exceptions provide a way to use a new base address. The next two examples illustrate these
exceptions:

Example 1:
.csect data[PR]
.long 0x1

dl: .long 0x2
base2; .long 0x3

Chapter 9. Pseudo-ops 485

.long 0x4

.long 0x5
dl2: .long 0x6

1 12, data_block.T(2) # Load addr. of data[PR] into r12
ca1 14, base2(12) # Load addr. of base2 into r14
.using base2, 14
1 4, dl2 # Convert to: 1 4, 0xc(14)

base address base2 is used
1 14, data_block.T(2) # Load addr. of data[PR] into r14
.using data[PR], 14
1 4, dl2 # Convert to: 1 4, 0x14(14)
.toc

data_block.T: .tc data_block[tc], data[PR]

Example 2:
.csect data[PR]
.long 0x1

dl: .long 0x2
base2; .long 0x3

.long 0x4

.long 0x5
dl2: .long 0x6

1 12, data_block.T(2) # Load addr. of data[PR] into r12
ca1 14, base2(12) # Load addr. of base2 into r14
.using base2, 14
1 4, dl2 # Convert to: 1 4, 0xc(14)
.drop 14
.using data[PR], 12
1 4, dl2 # Convert to: 1 4, 0x14(12)
.toc

data_block.T: .tc data_block[tc], data[PR]

Note: The assembler does not convert the implicit address references that are outside the Using
Domain. So, if these implicit address references appear before any .using pseudo-op that defines a
base address of the current csect, or after the .drop pseudo-ops drop all the base addresses of the
current csect, an error is reported.

The next example shows the error conditions:
.csect data[PR]
.long 0x1

dl: .long 0x2
base2; .long 0x3

.long 0x4

.long 0x5
dl2: .long 0x6

1 4, dl2 # Error is reported here
1 12, data_block.T(2) # Load addr. of data[PR] into r12
1 14, data_block.T(2) # Load addr. of data[PR] into r14
.using data[PR], 12
1 4, dl2
1 4, 0x14(12)
.drop 12
1 4, dl2 # Error is reported here
.using data[PR], 14
1 4, dl2
1 4, 0x14(14)
.toc

data_block.T: .tc data_block[tc], data[PR]
.csect data1[PR]

dl3: .long 0x7
.using data[PR], 5
1 5, dl3 # Error is reported

here, dl3 is in csect
data1[PR] and

486 Assembler Language Reference

Using table has no entry of
csect data1[PR]

l 5, dl2 # No error, because dl2 is in
data [PR]

Parameters

Register Represents the register number for expressions. It must be absolute and must evaluate to an
integer from 0 to 31 inclusive.

Expression Specifies a label or an expression involving a label that represents the displacement or relative
offset into the program. The Expression parameter can be an external symbol if the symbol is a
csect or Table of Contents (TOC) entry defined within the assembly.

Examples
The following example demonstrates the use of the .using pseudo-op:
.csect data[rw]
.long 0x0, 0x0
d1: .long 0x25
A read/write csect contains the label d1.
.csect text[pr]
.using data[rw], 12
l 4,d1
This will actually load the contents of
the effective address, calculated by
adding the address d1 to the address in
GPR 12, into GPR 4

Related Information
Implicit-Based Addressing

The .csect pseudo-op, .drop pseudo-op.

.vbyte Pseudo-op

Purpose
Assembles the value represented by an expression into consecutive bytes.

Syntax

.vbyte Number, Expression

Description
The .vbyte pseudo-op assembles the value represented by the Expression parameter into a specified
number of consecutive bytes.

Parameters

Number Specifies a number of consecutive bytes. The Number value must range between 1 and 4.
Expression Specifies a value that is assembled into consecutive bytes. The Expression parameter cannot

contain externally defined symbols. If the Expression value is longer than the specified number of
bytes, it will be truncated on the left.

Chapter 9. Pseudo-ops 487

Examples
The following example illustrates the use of the .vbyte pseudo-op:
.csect data[RW]
mine: .vbyte 3,0x37CCFF
This pseudo-op also accepts character constants.
.vbyte 1,'c
Load GPR 4 with address of .csect data[RW].
.csect text[PR]
l 3,mine(4)
GPR 3 now holds 0x37CCFF.

Related Information
Pseudo-ops Overview.

The .byte pseudo-op.

.xline Pseudo-op

Purpose
Represents a line number.

Syntax

.xline Number1, StringConstant[, Number2]

Description
The .xline pseudo-op provides additional file and line number information to the assembler. The Number2
parameter can be used to generate .bi and .ei type entries for use by symbolic debuggers. This
pseudo-op is customarily inserted by the M4 macro processor.

Parameters

Number1 Represents the line number of the original source file.
StringConstant Represents the file name of the original source file.
Number2 Represents the C_BINCL and C_EINCL classes, which indicate the beginning and ending

of an included file, respectively.

Examples
The following example illustrates the use of the .xline pseudo-op:
.xline 1,"hello.c",108
.xline 2,"hello.c"

Related Information
Pseudo-ops Overview.

488 Assembler Language Reference

Appendix A. Messages

The messages in this appendix are error messages or warning messages. Each message contains three
sections:

v Message number and message text

v Cause of the message

v Action to be taken

For some messages that are used for file headings, the Action section is omitted.

1252-001 <name> is defined already.

Cause The user has previously used name in a definition-type statement and is trying to
define it again, which is not allowed. There are three instances where this message
is displayed:

v A label name has been defined previously in the source code.

v A .set pseudo-op name has been defined previously in the source code.

v A .lcomm or .comm pseudo-op name has been previously defined in the source
code.

Action Correct the name-redefined error.
1252-002 There is nesting overflow. Do not specify more than 100 .function, .bb, or .bi pseudo-ops

without specifying the matching .ef, .eb, or .ei pseudo-ops.

Cause This syntax error message will only be displayed if debugger pseudo-ops are used.
The .function, .bb, and .bi pseudo-ops generate pointers that are saved on a stack
with a limiting size of 100 pointers. If more than 100 .function and .bb pseudo-ops
have been encountered without encountering the matching .ef and .eb pseudo-ops,
this syntax error message is displayed.

Action Rewrite the code to avoid this nesting.

Note: Debugger pseudo-ops are normally generated by compilers, rather than being
inserted in the source code by the programmer.

1252-003 The .set operand is not defined or is a forward reference.

Cause The .set pseudo-op has the following syntax:

.set name,expr

The expr parameter can be an integer, a predefined name (specified by a label, or
by a .lcomm or .comm pseudo-op) or an algebraic combination of an integer and a
name. This syntax error message appears when the expr parameter is not defined.

Action Verify that all elements of the expr parameter are defined before the .set statement.

© Copyright IBM Corp. 1997, 2001 489

1252-004 The .globl symbol is not valid. Check that the .globl name is a relocatable expression.

Cause The .globl name must be a relocatable expression. This syntax error message is
displayed when the Name parameter of the .globl pseudo-op is not a relocatable
expression.

Relocation refers to an entity that represents a memory location whose address or
location can and will be changed to reflect run-time locations. Entities and symbol
names that are defined as relocatable or nonrelocatable are described in
Expressions .

Relocatable expressions include label names, .lcomm, .comm names, and .csect
names.

The following are the nonrelocatable items and nonrelocatable expressions:

v .dsect names

v labels contained within a .dsect

v labels contained within a csect with a storage class of BS or UC

v .set names

v absolute expression (constant or integer)

v tocrelative (.tc label or name)

v tocofrelative (.tocof label or name)

v unknown (undefined in Pass 2 of the assembler)

Action Ensure that the Name parameter of the .globl pseudo-op is a relocatable
expression. If not defined, the name is assumed to be external.

1252-005 The storage class is not valid. Specify a supported storage class for the csect name.

Cause This syntax error message is displayed when the storage mapping class value used
to specify the Qualname in the .csect pseudo-op is not one of the predefined
values.

Action See the .csect pseudo-op for the list of predefined storage mapping classes. Correct
the program error and assemble and link the program again.

1252-006 The ERRTOK in the ICSECT ERRTOK is not known. Depending upon where you acquired
this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-007 The alignment must be an absolute expression.

Cause This syntax error message is caused by an incorrect operand (the optional alignment
parameter) to the .csect pseudo-op. This alignment parameter must be either an
absolute expression (an integer) or resolve algebraically into an absolute expression.

Action Correct the alignment parameter, then assemble and link the program again.
1252-008 The .tocof name1 is not valid. Check that the name1 has not been defined previously.

Cause The Name1 parameter of the .tocof pseudo-op has been defined elsewhere in the
current module.

Action:
Ensure that the name1 symbol is defined only in the .tocof pseudo-op.

1252-009 A Begin or End block or .function pseudo-op is missing. Make sure that there is a matching
.eb statement for each .bb statement and that there is a matching .ef statement for each .bf
statement.

Cause If there is not a matching .eb pseudo-op for each .bb pseudo-op or if there is not a
matching .ef pseudo-op for each .bf pseudo-op, this error message is displayed.

Action Verify that there is a matching .eb pseudo-op for every .bb pseudo-op, and verify
that there is a matching .ef pseudo-op for every .bf pseudo-op.

490 Assembler Language Reference

1252-010 The .tocof Name2 is not valid. Make sure that name2 is an external symbol.

Cause The Name2 parameter for the .tocof pseudo-op has not been properly defined.

Action Ensure that the Name2 parameter is externally defined (it must appear in an .extern
or .globl pseudo-op) and ensure that it is not defined locally in this source module.

Note: If the Name2 parameter is defined locally and is externalized using a .extern
pseudo-op, this message is also displayed.

1252-011 A .space parameter is undefined.

Cause The Number parameter to the .space pseudo-op must be a positive absolute
expression. This message indicates that the Number parameter contains an
undefined element (such as a label or name for a .lcomm, .comm, or .csect
pseudo-op that will be defined later).

Action Verify that the Number parameter is an absolute expression, integer expression, or
an algebraic expression that resolves into an absolute expression.

1252-012 The .space size must be an absolute expression.

Cause The Number parameter to the .space pseudo-op must be a positive absolute
expression. This message indicates that the Number parameter contains a
nonabsolute element (such as a label or name for a .lcomm, .comm, or .csect
pseudo-op).

Action Verify that the Number parameter specifies an absolute expression, or an integer or
algebraic expression that resolves into an absolute expression.

1252-013 The .space size must be a positive absolute expression.

Cause The Number parameter to the .space pseudo-op must be a positive absolute
expression. This message indicates that the Number parameter resolves to a
negative absolute expression.

Action Verify that the Number parameter is a positive absolute expression.
1252-014 The .rename Name symbol must be defined in the source code.

Cause The Name parameter to the .rename pseudo-op must be defined somewhere in the
source code. This message indicates that the Name parameter has not been
defined.

Action Verify that the Name parameter is defined somewhere in the source code.
1252-015 A pseudo-op parameter is not defined.

Cause This is a syntax error message displayed for the .line, .xline, .bf, .ef, .bb, and .eb
pseudo-ops. These expressions have an expression operand that must resolve.

Action Change the source code so that the expression resolves or is defined.
1252-016 The specified opcode or pseudo-op is not valid. Use supported instructions or pseudo-ops

only.

Cause The first element (after any label) on the source line is not recognized as an
instruction or pseudo-op.

Action Use only supported instructions or pseudo-ops.
1252-017 The ERRTOK in the args parameter is not valid. Depending upon where you acquired this

product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-018 Use a .tc inside a .toc scope only. Precede the .tc statements with a .toc statement.

Cause A .tc pseudo-op is only valid after a .toc pseudo-op and prior to a .csect pseudo-op.
Otherwise, this message is displayed.

Action Ensure that a .toc pseudo-op precedes the .tc pseudo-ops. Any other pseudo-ops
should be preceded by a .csect pseudo-op. The .tc pseudo-ops do not have to be
followed by a .csect pseudo-op, if they are the last pseudo-ops in a source file.

Appendix A. Messages 491

1252-019 Do not specify externally defined symbols as .byte or .vbyte expression parameters.

Cause If the Expression parameter of the .byte or .vbyte pseudo-op contains externally
defined symbols (the symbols appear in a .extern or .globl pseudo-op), this
message is displayed.

Action Verify that the Expression parameter of the .byte or .vbyte pseudo-op does not
contain externally defined symbols.

1252-020 Do not specify externally defined symbols as .short Expression parameters.

Cause If the Expression parameter of the .short pseudo-op contains externally defined
symbols (the symbols appear in an .extern or .globl pseudo-op), this message is
displayed.

Action Verify that the Expression parameter of the .short pseudo-op does not contain
externally defined symbols.

1252-021 The expression must be absolute.

Cause The Expression parameter of the .vbyte pseudo-op is not an absolute expression.

Action Ensure that the expression is an absolute expression.
1252-022 The first parameter must resolve into an absolute expression from 1 through 4.

Cause The first parameter of the .vbyte pseudo-op must be an absolute expression ranging
from 1 to 4.

Action Verify that the first parameter of the .vbyte pseudo-op resolves to an absolute
expression from 1 to 4.

1252-023 The symbol <name> is not defined.

Cause An undefined symbol is used in the source program.

Action A symbol can be defined as a label, or as the Name parameter of a .csect, .comm,
.lcomm, .dsect, .set, .extern, or .globl pseudo-op. The -u flag of the as command
suppresses this message.

1252-024 The .stab string must contain a : character.

Cause The first parameter of the .stabx pseudo-op is a string constant. It must contain a :
(colon). Otherwise, this message is displayed.

Action Verify that the first parameter of the .stabx pseudo-op contains a : (colon).
1252-025 The register, base register, or mask parameter is not valid. The register number is limited to

the number of registers on your machine.

Cause The register number used as the operand of an instruction or pseudo-op is not an
absolute value, or the value is out of range of the architecture.

Action An absolute expression should be used to specify this value. For PowerPC and
POWER family, valid values are in the range of 0-31.

1252-026 Cannot create a temporary file. Check the /tmp directory permissions.

Cause This message indicates a permission problem in the /tmp filesystem.

Action Check the permissions on the /tmp directory.
1252-027 Warning: Aligning with zeroes: The .short pseudo-op is not on the halfword boundary.

Cause This warning indicates that a .short pseudo-op is not on the halfword boundary. The
assembler places zeros into the current location until the statement is aligned to a
halfword boundary.

Action If the user wants to control the alignment, using a .align pseudo-op with the Number
parameter set to 1 prior to the .short pseudo-op will perform the same function. A
.byte pseudo-op with an Expression parameter set to 0 prior to the .short
pseudo-op will perform the same function that the assembler does internally.

492 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTC2780F1469JEFF

1252-028 Cannot reopen the intermediate result file in the /tmp directory. Make sure that the size of the
/tmp file system is sufficient to store the file, and check that the file system is not damaged.

Cause This message indicates that a system problem occurred while closing the
intermediate file and then opening the file again.

Action The intermediate file normally resides in the /tmp filesystem. Check the /tmp
filesystem space to see if it is large enough to contain the intermediate file.

1252-029 There is not enough memory available now. Cannot allocate the text and data sections. Try
again later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the text and data section. There is either not enough main
memory, or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-030 Cannot create the file <filename>. Check path name and permissions.

Cause This message indicates that the assembler is unable to create the output file (object
file). An object file is created in the specified location if the -o flag of the as
command is used. If the -o flag is not used, an object file with the default name of
a.out is created in the current directory. If there are permission problems for the
directory or the path name is invalid, this message is displayed.

Action Check the path name and permissions.
1252-031 There is not enough memory available now. Cannot allocate the ESD section. Try again later

or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the ESD section. There is either not enough main memory, or
memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-032 There is not enough memory available now. Cannot allocate the RLD section. Try again later
or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the RLD section. There is either not enough main memory, or
memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-033 There is not enough memory available now. Cannot allocate the string section. Try again later
or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the string section. There is either not enough main memory,
or memory pointers are being corrupted.

Action Try again later. If the problem continues occur, check applications load for the
memory or talk to the system administrator.

1252-034 There is not enough memory available now. Cannot allocate the line number section. Try
again later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the line number section. There is either not enough main
memory, or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-035
through
1252-037

Obsolete messages.

Appendix A. Messages 493

../../libs/basetrf1/malloc.htm#HDRA174921E
../../cmds/aixcmds1/as.htm#SPTA6R5ZF8ECLIF
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/malloc.htm#HDRA174921E

1252-038 Cannot open file <filename>. Check path name and permissions.

Cause The specified source file is not found or has no read permission; the listfile or the
xcrossfile has no write permission; or the specified path does not exist.

Action Check the path name and read/write permissions.
1252-039 Not used currently.
1252-040 The specified expression is not valid. Make sure that all symbols are defined. Check the rules

on symbols used in an arithmetic expression concerning relocation.

Cause The indicated expression does not resolve into an absolute expression, relocatable
expression, external expression, toc relative expression, tocof symbol, or restricted
external expression.

Action Verify that all symbols are defined. Also, there are some rules concerning relocation
on which symbols can be used in an arithmetic expression. See Expressions for
more information.

1252-041 Cannot divide the value by 0 during any arithmetic divisions.

Cause During an arithmetic division, the divisor is zero.

Action Ensure that the value is not divided by zero.
1252-042 The internal arithmetic operator is not known. Depending upon where you acquired this

product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-043 The relocatable assembler expression is not valid. Check that the expressions can be

combined.

Cause This message is displayed when some invalid arithmetic combinations of the
expressions are used.

Action Ensure that the correct arithmetic combination is used. See Expressions for the
specific rules of the valid arithmetic combinations for expressions.

1252-044 The specified source character <char> does not have meaning in the command context used.

Cause A source character has no meaning in the context in which it is used. For
example,.long 3@1, the @ is not an arithmetic operator or an integer digit, and has
no meaning in this context.

Action Ensure that all characters are valid and have meaning in the context in which they
are used.

1252-045 Cannot open the list file <filename>. Check the quality of the file system.

Cause This occurs during pass two of the assembler, and indicates a possible filesystem
problem or a closing problem with the original listing file.

Action Check the file system according to the file path name.
1252-046 Not used currently.
1252-047 There is a nesting underflow. Check for missing .function, .bi, or .bb pseudo-ops.

Cause This syntax error message is displayed only if debugger pseudo-ops are used. The
.function, .bb, and .bi pseudo-ops generate pointers that are saved on a stack with
a limiting size of 100 pointers. The .ef, .eb, and .ei pseudo-ops then remove these
pointers from the stack. If the number of .ef, .eb, and .ei pseudo-ops encountered is
greater than the number of pointers on the stack, this message is displayed.

Action Rewrite the code to avoid this problem.
1252-048 Found a symbol type that is not valid when building external symbols. Depending upon where

you acquired this product, contact either your service representative or your approved
supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

494 Assembler Language Reference

1252-049 There is not enough memory to contain all the hash strings. Depending upon where you
acquired this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-050 There is not enough memory available now. Cannot allocate the debug section. Try again

later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the debug section. There is either not enough main memory,
or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-051 There is an sclass type of Number=<number> that is not valid. Depending upon where you
acquired this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-052 The specified .align parameter must be an absolute value from 0 to 12.

Cause The Number parameter of the .align pseudo-op is not an absolute value, or the
value is not in the range 0-12.

Action Verify that the Number parameter resolves into an absolute expression ranging from
0 to 12.

1252-053 Change the value of the .org parameter until it is contained in the current csect.

Cause The value of the parameter for the .org pseudo-op causes the location counter to go
outside of the current csect.

Action Ensure that the value of the first parameter meets the following criteria:

Must be a positive value (includes 0).

Must result in an address that is contained in the current csect.

Must be an external (E_EXT) or relocatable (E_REL) expression.
2363-054 The register parameter in .using must be absolute and must represent a register on the

current machine.

Cause The second parameter of the .using pseudo-op does not represent an absolute
value, or the value is out of the valid register number range.

Action Ensure that the value is absolute and is within the range of 0-31 for PowerPC and
POWER family.

1252-055 There is a base address in .using that is not valid. The base address must be a relocatable
expression.

Cause The first parameter of the .using pseudo-op is not a relocatable expression.

Action Ensure that the first parameter is relocatable. The first parameter can be a
TOC-relative label, a label/name that is relocatable (relocatable=REL), or an external
symbol that is defined within the current assembly source as a csect name/TOC
entry.

1252-056 Specify a .using argument that references only the beginning of the TOC section. The
argument cannot reference locations contained within the TOC section.

Cause The first parameter of the .using pseudo-op is a TOC-relative expression, but it
does not point to the beginning of the TOC.

Action Verify that the first parameter describes the beginning of the TOC if it is
TOC-relative.

Appendix A. Messages 495

../../libs/basetrf1/malloc.htm#HDRA174921E

1252-057 The external expression is not valid. The symbol cannot be external. If the symbol is external,
the symbol must be defined within the assembly using a .toc or a .csect entry.

Cause An external expression other than a csect name or a TOC entry is used for the first
parameter of the .using pseudo-op.

Action Ensure that the symbol is either not external (not specified by an .extern pseudo-op)
or is defined within the assembly source using a TOC entry or csect entry.

1252-058 Warning: The label <name> is aligned with csect <csectname>.

Cause If the label is in the same line of the .csect pseudo-op. this warning is reported
when the -w flag of the as command is used. This message indicates that a label
may not be aligned as intended. If the label should point to the top of the csect, it
should be contained within the csect, in the first line next to the .csect pseudo-op.

Action Evaluate the intent of the label.
1252-059 The register in .drop must be an absolute value that is a valid register number.

Cause The parameter of the .drop pseudo-op is not an absolute value, or the value is not
in the range of valid register numbers.

Action Use an absolute value to indicate a valid register. For PowerPC and POWER family,
valid register numbers are in the range of 0-31.

1252-060 The register in .drop is not in use. Delete this line or insert a .using line previous to this
.drop line.

Cause This message indicates that the register represented by the parameter of the .drop
pseudo-op was never used in a previous .using statement.

Action Either delete the .drop pseudo-op or insert the .using pseudo-op that should have
been used prior to this .drop pseudo-op.

1252-061 A statement within .toc scope is not valid. Use the .tc pseudo-op to define entries within .toc
scope.

Cause If a statement other than a .tc pseudo-op is used within the .toc scope, this
message is displayed.

Action Place a .tc pseudo-op only inside the .toc scope.
1252-062 The alignment must be a value from 0 to 31.

Cause The optional second parameter (Number) of the .csect parameter defines alignment
for the top of the current csect. Alignment must be in the range 0-31. Otherwise, this
message is displayed.

Action Ensure that the second parameter is in the valid range.
1252-063 Obsolete message.
1252-064 The .comm size must be an absolute expression.

Cause The second parameter of the .comm pseudo-op must be an absolute expression.
Otherwise, this message is displayed.

Action Ensure that the second parameter is an absolute expression.
1252-065 Not used currently.
1252-066 There is not enough memory available now. Cannot allocate the typchk section. Try again

later or use local problem reporting procedures.

Cause This is a memory-management problem. It is reported when the malloc function is
called while allocating the debug section. There is either not enough main memory,
or memory pointers are being corrupted.

Action Try again later. If the problem continues to occur, check the applications load for the
memory or talk to the system administrator.

1252-067 The specified common storage class is not valid. Depending upon where you acquired this
product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.

496 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTJR5ZF220CLIF
../../libs/basetrf1/malloc.htm#HDRA174921E

1252-068 The .hash string is set for symbol name already. Check that this is the only .hash statement
associated with the symbol name.

Cause The Name parameter of the .hash pseudo-op has already been assigned a string
value in a previous .hash statement.

Action Ensure that the Name parameter is unique for each .hash pseudo-op.
1252-069 The character <char> in the hash string is not valid. The characters in the string must be in

the set [0-9A-Fa-f].

Cause The characters in the hash string value (the second parameter of the .hash
pseudo-op) are required to be in the set [0-9A-Fa-f]. The characters represent a
hexadecimal hash code. Otherwise, this message is displayed.

Action Ensure that the characters specified by the StringConstant parameter are contained
within this set.

1252-070 The specified symbol or symbol type for the hash value is not valid.

Cause If the Name parameter for the .hash pseudo-op is not a defined external symbol,
this message is displayed.

Notes:

1. This message can be suppressed by using the -u flag of the as command.

2. A defined internal symbol (for example, a local label) can also cause this
message to be displayed.

Action Use the -u flag of the as command, or use the .extern or .globl pseudo-op to define
the Name parameter as an external symbol.

1252-071
and
1252-072

Not used currently.

1252-073 There is not enough memory available now. Cannot allocate a segment in memory. Try again
later or use local problem reporting procedures.

Cause This indicates a malloc, realloc, or calloc problem. The following problems can
generate this type of error:

v Not enough main memory to allocate

v Corruption in memory pointers

v Corruption in the filesystem

Action Check the file systems and memory status.
1252-074 The pseudo-op is not within the text section. The .function, .bf, and .ef pseudo-ops must be

contained within a csect with one of the following storage classes: RO, PR, XO, SV, DB, GL,
TI, or TB.

Cause If the .function, .bf and .ef pseudo-ops are not within a csect with a storage
mapping class of RO, PR, XO, SV, DB, GL, TI, or TB, this syntax error message is
displayed.

Action Ensure that the .function, .bf, and .ef pseudo-ops are within the scope of a text
csect.

1252-075 The specified number of parameters is not valid.

Cause This is a syntax error message. The number of parameters specified with the
instruction is incorrect.

Action Verify that the correct number of parameters are specified for this instruction.
1252-076 The .line pseudo-op must be contained within a text or data .csect.

Cause This is a syntax error message. The .line pseudo-op must be within a text or data
section. If the .line pseudo-op is contained in a .dsect pseudo-op, or in a .csect
pseudo-op with a storage mapping class of BS or UC, this error is displayed.

Action Verify that the .line pseudo-op is not contained within the scope of a .dsect; or in a
.csect pseudo-op with a storage mapping class of BS or UC.

Appendix A. Messages 497

../../cmds/aixcmds1/as.htm#SPTC2780F1469JEFF
../../libs/basetrf1/malloc.htm#HDRA174921E

1252-077 The file table is full. Do not include more than 99 files in any single assembly source file.

Cause The .xline pseudo-op indicates a filename along with the number. These
pseudo-ops are generated with the -l option of the m4 command. A maximum of 99
files may be included with this option. If more than 99 files are included, this
message is displayed.

Action Ensure that the m4 command has not included more than 99 files in any single
assembly source file.

1252-078 The bit mask parameter starting at <positionnumber> is not valid.

Cause This is a syntax error message. In rotate left instructions, there are two input
operand formats: rlxx RA,RS,SH,MB,ME, or rlxx RA,RS,SH,BM. This message is
displayed only if the second format is used. The BM parameter specifies the mask
for this instruction. It must be constructed by certain rules. Otherwise, this message
is displayed. See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions
for information on constructing the BM parameter.

Action Correct the bit mask value.
1252-079 Found a type that is not valid when counting the RLDs. Depending upon where you acquired

this product, contact either your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-080 The specified branch target must be on a full word boundary.

Cause This is a syntax error message. Branch instructions have a target or location to
which the program logic should jump. These target addresses must be on a fullword
boundary.

Action Ensure that the branch target is on a fullword address (an address that ends in 0, 4,
8, or c). The assembler listing indicates location counter addresses. This is useful
when trying to track down this type of problem.

1252-081 The instruction is not aligned properly. The instruction requires machine-specific alignment.

Cause On PowerPC and POWER family, the alignment must be fullword. If this message is
displayed, it is probable that an instruction or pseudo-op prior to the current
instruction has modified the location counter to result in an address that does not fall
on a fullword.

Action Ensure that the instruction is on a fullword address.
1252-082 Use more parameters for the instruction.

Cause Each instruction expects a set number of arguments to be passed to it. If too few
arguments are used, this error is displayed.

Action Check the instruction definition to find out how many arguments are needed for this
instruction.

1252-083 Use fewer parameters for the instruction.

Cause Each instruction expects a set number of arguments to be passed to it. If too many
arguments are used, this error is displayed.

Action Check the instruction definition to find out how many arguments are needed for this
instruction.

1252-084
and
1252-085

Obsolete messages.

1252-086 The target of the branch instruction must be a relocatable or external expression.

Cause An absolute expression target is used where a relocatable or external expression is
acceptable for a branch instruction.

Action Replace the current branch instruction with an absolute branch instruction, or
replace the absolute expression target with a relocatable target.

498 Assembler Language Reference

../../cmds/aixcmds3/m4.htm#SPTOBMZF3A3CLIF

1252-087 The target of the branch instruction must be a relocatable or external expression.

Cause This is a syntax error message. The target of the branch instruction must be either
relocatable or external.

Action Ensure that the target of this branch instruction is either relocatable or external.

Relocatable expressions include label names, .lcomm names, .comm names, and
.csect names.

Relocation refers to an entity that represents a memory location whose address or
location can and will be changed to reflect run-time locations. Entities and symbol
names that are defined as relocatable or non-relocatable are described in
Expressions .

1252-088 The branch address is out of range. The target address cannot exceed the ability of the
instruction to represent the bit size of the branch address value.

Cause This is a syntax error message. Branch instructions limit the target address sizes to
26 bits, 16 bits, and other instruction-specific sizes. When the target address value
cannot be represented in the instruction-specific limiting space, this message is
displayed.

Action Ensure that the target address value does not exceed the instruction’s ability to
represent the target address (bit size).

1252-089
through
1252-098

Obsolete messages.

1252-099 The specified displacement is not valid. The instruction displacement must be relocatable,
absolute, or external.

Cause This is a syntax error message. The instruction displacement must be either
relocatable; absolute; external which has the XTY_SD or STY_CM symbol type (a
csect or common block name); or possibly TOC-relative (but not a negative
TOC-relative), depending on the machine platform.

Action Verify that the displacement is valid for this instruction.
1252-100 Either the displacement value or the contents of the specified general purpose register, or

both, do not yield a valid address.

Cause Indicates an invalid d(r) operand. Either d or r is missing.

Action Verify that the base/displacement operand is formed correctly. Correct the
programming error, then assemble and link the program again.

Note: If d or r does not need to be specified, 0 should be put in the place.
1252-101
and
1252-102

Obsolete messages.

1252-103 The specified instruction is not supported by this machine.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-104 The <parm #> parameter must be absolute.

Cause The indicated parameter must be absolute (nonrelocatable, nonexternal).

Action Refer to the specific instruction article for the instruction syntax.
1252-105 Obsolete message.
1252-106 Not currently used.

Appendix A. Messages 499

1252-107 The parameter <parm #> must be within range for the specific instruction.

Cause This error occurs in the following situations:

v The parameter value does not lie within the lower and upper bounds.

v The parameter value for the SPR encoding is undefined.

v The parameter value for the rotate and shift instructions is beyond the limitation.

Action See the specific instruction article for the instruction definition. See Extended
Mnemonics of Moving from or to Special-Purpose Registers for the list of SPR
encodings. In general, if the assembly mode is com, pwr, or pwr2, the SPR range
is 0 to 31. Otherwise, the SPR range is 0 to 1023. See Extended Mnemonics of
Fixed-Point Rotate and Shift Instructions for information on restrictions. Change the
source code, then assemble and link the program again.

1252-108 Warning: The alignment for label <name> is not valid. The label requires machine-specific
alignment.

Cause Indicates that a label is not aligned properly to be the subject of a branch. In other
words, the label is not aligned to a fullword address (an address ending in 0, 4, 8, or
c).

Action To control the alignment, a .align pseudo-op prior to the label will perform the
alignment function. Also, a .byte pseudo-op with a parameter of 0 or a .short
pseudo-op with a parameter of 0 prior to the label will shift the alignment of the
label.

1252-109 Warning: Aligning with zeros: The .long pseudo-op is not on fullword boundary.

Cause Indicates that a .long pseudo-op exists that is not aligned properly on a fullword
internal address (an address that ends in 0, 4, 8, or c). The assembler generates
zeros to properly align the statement.

Action To control the alignment, a .align pseudo-op with a parameter of 2 prior to the .long
pseudo-op will perform the alignment. Also, a .byte pseudo-op with a parameter of 0
or a .short pseudo-op with a parameter of 0 prior to the .long pseudo-op will
perform the alignment.

1252-110 Warning: Aligning with zeros in program csect.

Cause If the .align pseudo-op is used within a .csect of type [PR] or [GL], and the .align
pseudo-op is not on a fullword address (for PowerPC and POWER family, all
instructions are four bytes long and are fullword aligned), the assembler performs
alignment by padding zeros, and this warning message is displayed. It is also
displayed when a fullword alignment occurs in other pseudo-op statements.

Action Look for a reason why the alignment is not on a fullword. This could indicate a
possible pseudo-op or instruction in the wrong place.

1252-111 Warning: Csect alignment has changed. To change alignment, check previous .csect
statements.

Cause The beginning of the csect is aligned according to a default value (2, fullword) or the
Number parameter. This warning indicates that the alignment that was in effect when
the csect was created has been changed later in the source code.

The csect alignment change can be caused by any of the following:

v The Number parameter of the .csect pseudo-op specifies a value greater than
previous .csect pseudo-ops that have the same Qualname.

v The Number parameter of a .align pseudo-op specifies a value greater than the
current csect alignment.

v A .double pseudo-op is used, which causes the alignment to increase to 3. If the
current csect alignment is less than 3, this warning is reported.

Action This message may or may not indicate a problem, depending on the user’s intent.
Evaluate whether a problem has occurred or not.

500 Assembler Language Reference

1252-112 Warning: The <inst. format> instruction is not supported by this machine.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem
1252-113
and
1252-114

Obsolete messages.

1252-115 The sort failed with status <number>. Check the condition of the system sort command or
use local problem reporting procedures.

Cause When the -x flag of the as command is used from the command line, the system
sort routine is called. If this call is not successful, this message is displayed. Either
the sort utility is not available, or a system problem has occurred.

Action Check the condition of the system sort command, check the system itself (using the
fsck command), or use local problem reporting procedures.

1252-116 There is a system error from <name>. Check the condition of the system sort command or
use local problem reporting procedures.

Cause name has the sort command. When the -x flag of the as command is used from the
command line, the system sort routine is called. The assembler forks a process to
call the sort utility. If this fork fails to exec the sort routine, this message is displayed.
Either the sort utility is not available, or a system problem has occurred.

Action Check the condition of the system sort command, check the system itself (using the
fsck command), or use local problem reporting procedures.

1252-117 ″Assembler:″

Cause This line defines a header to the standard error output to indicate that it is an
assembly program.

1252-118 ″line <number>″

Cause number contains the line number on which an error or warning resides. When
assembling a source program, this message is displayed prior to the error/warning
message on the screen. This message is also printed prior to the error/warning
message in the assembler listing file.

1252-119 ″.xref″

Cause This message defines the default suffix extension for the file name of the symbol
cross-reference file.

1252-120 ″.lst″

Cause This message defines the default suffix extension for the file name of the assembler
listing file.

1252-121 ″SYMBOL FILE CSECT LINENO″

Cause This line defines the heading of the symbol cross-reference file.
1252-122
to
1252-123

Define several formats used in the assembler listing file.

1252-124 Obsolete, replaced by 1252-179.
1252-125
to
1252-132

Define the spaces or formats for the assembler listing file.

1252-133
to
1252-134

Define formats for output numbers and names.

1252-135 Defines 8 spaces that are used in the listing file.
1252-136 Defines a format used in the listing file.
1252-137
to
1252-140

Formats for output of a number.

Appendix A. Messages 501

../../cmds/aixcmds1/as.htm#SPTAS5ZF1C8CLIF
../../cmds/aixcmds2/fsck.htm#HDRA10192C87
../../cmds/aixcmds1/as.htm#SPTAS5ZF1C8CLIF
../../cmds/aixcmds2/fsck.htm#HDRA10192C87

1252-141 There is an error in the collect pointer. Use local problem reporting procedures.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-142 Syntax error

Cause If an error occurred in the assembly processing and the error is not defined in the
message catalog, this generic error message is used. This message covers both
pseudo-ops and instructions. Therefore, a usage statement would be useless.

Action Determine intent and source line construction, then consult the specific instruction
article to correct the source line.

1252-143 The .function Size must be an absolute expression.

Cause The Size parameter of the .function pseudo-op represents the size of the function.
It must be an absolute expression.

Action Change the Size parameter, then assemble and link the program again.
1252-144 Warning: Any initialized data in <name> csect of BS or UC storage class is ignored but

required to establish length.

Cause Indicates that the statements in the csect with a storage mapping class of BS or UC
are used to calculate length of the csect and are not used to initialize data.

Action None.
1252-145
and
1252-146

Obsolete, replaced by 1252-180 and 1252-181.

1252-147 Invalid .machine assembly mode operand: <name>

Cause The .machine pseudo-op is used in a source program to indicate the assembly
mode value. This message indicates that an undefined value was used.

Action See the .machine pseudo-op for a list of the defined assembly mode values.
1252-148 Invalid .source language identifier operand: <name>

Cause The .source pseudo-op indicates the source language type (C, FORTRAN, etc.).
This message indicates that an invalid source language type was used.

Action See the .source pseudo-op for a list of the defined language types.
1252-149 Instruction <name1> is not implemented in the current assembly mode <name2>.

Cause Instructions that are not in the POWER family/PowerPC intersection area are
implemented only in certain assembly modes. This message indicates that the
instruction in the source program is not supported in the indicated assembly mode.

Action Use a different assembly mode or a different instruction.
1252-150 The first operand value of value is not valid for PowerPC. A BO field of 6, 7 14, 15, or greater

than 20 is not valid.

Cause In branch conditional instructions, the first operand is the BO field. If the input value is
outside of the required values, this message is displayed.

Action See the Features of the AIX Version 4 Assembler for the BO field encoding
information to find the correct value of the input operand.

1252-151 This instruction form is not valid for PowerPC. The register used in operand two must not be
zero and must not be the same as the register used in operand one.

Cause In the update form of fixed-point load instructions, PowerPC requires that the RA
operand not be equal to zero and that it not be equal to RT. If these requirements
are violated, this message is displayed.

Action See the Features of the AIX Version 4 Assembler for a list of these instructions, and
refer to the instruction articles for the syntax and restrictions of these instructions.
Change the source code, then assemble and link the program again.

502 Assembler Language Reference

1252-152 Internal error related to the source program domain. Depending upon where you acquired this
product, contact your service representative or your approved supplier.

Cause This is an internal error message.

Action Contact your service representative or your approved supplier to report the problem.
1252-153 Warning: Instruction <name> functions differently between PowerPC and POWER.

Cause This warning message is not displayed unless the -w flag of the as command is
used in the command line. Some instructions have the same op code in PowerPC
and POWER, but are functionally different. This message provides a warning if the
assembly mode is com and these instructions are used.

Action See Functional Differences for POWER and PowerPC Instructions for information on
instructions that have the same op code but are functionally different in POWER and
PowerPC.

1252-154 The second operand is not valid. For 32-bit implementation, the second operand must have a
value of zero.

Cause In the fixed-point compare instructions, the value in the L field must be zero for
32-bit implementation. Also, if the mtsri instruction is used in one of the PowerPC
assembly modes, the RA operand must contain zero. Otherwise, this message is
displayed.

Action Put the correct value in the second operand, then assemble and link the program
again.

1252-155 Displacement must be divisible by 4.

Cause If an instruction has the DS form, its 16-bit signed displacement value must be
divisible by 4. Otherwise, this message is displayed.

Action Change the displacement value, then assemble and link the program again.
1252-156 The sum of argument 3 and 4 must be less than 33.

Cause When some extended mnemonics for word rotate and shift instructions are
converted to the base instruction, the values of the third and fourth operands are
added to calculate the SH field, MB field, or ME field. Since these fields are 5 bits in
length, the sum of the third and fourth operands must not be greater than 32.

Action See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for
information on converting the extended mnemonic to the base instruction. Change
the value of the input operands accordingly, then assemble and link the program
again.

1252-157 The value of operand 3 must be greater than or equal to the value of operand 4.

Cause When some extended mnemonics for word rotate and shift instructions are
converted to the base instruction, the value of the fourth operand is subtracted from
the value of the third operand to get the ME or MB field. The result must be positive.
Otherwise, this message is displayed.

Action See Extended Mnemonics of Fixed-Point Rotate and Shift Instructions for
information on converting the extended mnemonic to the base instruction. Change
the value of the input operands accordingly, then assemble and link the program
again.

1252-158 Warning: Special-purpose register number 6 is used to designate the DEC register when the
assembly mode is name.

Cause This warning is displayed when the mfdec instruction is used and the assembly
mode is any. The DEC encoding for the mfdec instruction is 22 for PowerPC and 6
for POWER. When the assembly mode is any, the POWER encoding number is
used to generate the object code, and this message is displayed to indicate this.

Action None.

Appendix A. Messages 503

../../cmds/aixcmds1/as.htm#SPTJR5ZF220CLIF

1252-159 The d(r) format is not valid for operand <value>.

Cause Indicates an assembly programming error. The d(r) format is used in the place that a
register number or an immediate value is required.

Action Correct the programming error, then assemble and link the program again.
1252-160 Warning: A hash code value should be 10 bytes long.

Cause When the .hash pseudo-op is used, the second parameter, StringConstant, gives
the actual hash code value. This value should contain a 2-byte language ID, a
4-byte general hash, and a 4-byte language hash. The hash code value should be
10 bytes long. If the value length is not 10 bytes and the -w flag of the as command
is used, this warning is displayed.

Action Use the correct hash code value.
1252-161 A system problem occurred while processing file <filename>.

Cause A problem with system I/O developed dynamically. This message is produced by the
assembler to indicate an fwrite, putc, or fclose error. The I/O problem could be
caused by corruption of the filesystem or not enough space in the file systems.

Action Check the proper file system according to the path name reported.
1252-162 Invalid -m flag assembly mode operand: <name>.

Cause When an invalid assembly mode is entered on the command line using -m flag of
the as command, this message is displayed.

Action See the Overview of Assembling and Linking a Program for the defined assembly
modes.

1252-163 The first operand’s value <value> is not valid for PowerPC. The third bit of the BO field must
be one for the Branch Conditional to Count Register instruction.

Cause If the third bit of the BO operand is zero for the bcctr (Branch Conditional to Count
Register) instruction, the instruction form is invalid and this message is displayed.

Action Change the third bit to one, then assemble and link the program again.
1252-164 This instruction form is not valid for PowerPC. RA, and RB if present in the instruction,

cannot be in the range of registers to be loaded. Also, RA=RT=0 is not allowed.

Cause In multiple register load instructions, PowerPC requires that the RA operand, and the
RB operand if present in the instruction format, not be in the range of registers to be
loaded. Also RA=RT=0 is not allowed. Otherwise, this message is displayed.

Action Check the register number of the RA, RB, or RT operand to ensure that this
requirement is met.

1252-165 The value of the first operand must be zero for PowerPC.

Cause If the POWER svca instruction is used in one of the PowerPC assembly modes, the
first operand is the SV operand. This operand must be zero. Otherwise, this
message is displayed.

Action Put zero into the first operand, or use the PowerPC sc instruction, which does not
require an operand.

1252-166 This instruction form is not valid for PowerPC. The register used in operand two must not be
zero.

Cause For the update form of fixed-point store instructions and floating-point load and store
instructions, PowerPC requires that the RA operand not be equal to zero. Otherwise,
this message is displayed.

Action Check the register number specified by the RA operand, then assemble and link the
source code again.

504 Assembler Language Reference

../../cmds/aixcmds1/as.htm#SPTJR5ZF220CLIF
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/fclose.htm#HDRA0909927
../../cmds/aixcmds1/as.htm#SPTBEFF691050JEFF

1252-167 Specify a name with the -<flagname> flag.

Cause The -n and -o flags of the as command require a filename as a parameter. The -m
flag of the as command requires a mode name as a parameter. If the required name
is missing, this error message is displayed. This message replaces message
1252-035.

Action Provide a filename with the -n and -o flags of the as command, and provide a mode
name with the -m flag of the as command.

1252-168 -<name> is not a recognized flag.

Cause An undefined flag was used on the command line. This message replaces message
1252-036.

Action Make a correction and run the command again.
1252-169 Only one input file is allowed.

Cause More than one input source file was specified on the command line. This message
replaces message 1252-037

Action Specify only one input source file at a time.
1252-170 The Assembler command has the following syntax: as -l[ListFile] -s[ListFile] -n Name -o

ObjectFile [-w|-W] -x[XCrossFile] -u -m ModeName [InputFile]

Cause This message displays the usage of the as command.

Action None.
1252-171 The displacement must be greater than or equal to <value1> and less than or equal to

<value2>.

Cause For 16-bit displacements, the limits are 32767 and -32768. If the displacement is out
of range, this message is displayed. This message replaces message 1252-106.

Action See the specific instruction articles for displacement requirements.
1252-172 The .extern symbol is not valid. Check that the .extern Name is a relocatable expression.

Cause The Name parameter of the .extern pseudo-op must specify a relocatable
expression. This message is displayed if the Name parameter of the .extern
pseudo-op does not specify a relocatable expression. For information on relocatable
and nonrelocatable expressions, see message 1252-004 .

Action Ensure that the Name parameter of the .extern pseudo-op is a relocatable
expression.

1252-173 Warning: The immediate value for instruction <name> is <value>. It may not be portable to a
64-bit machine if this value is to be treated as an unsigned value.

Cause This warning is reported only for the addis instruction (or the lis extended
mnemonic of the addis instruction). The immediate value field of these instructions
is defined as a signed integer, which should have a valid value range of -32768 to
32767. To maintain compatibility with the cau instruction, however, this range is
expanded to -65536 to 65535. This should cause no problems in a 32-bit mode,
because there is nowhere for sign extension to go. However, this will cause a
problem on a 64-bit machine, because sign extension propagates across the upper
32 bits of the register.

Action Use caution when using the addis instruction to construct an unsigned integer. The
addis instruction has different semantics on a 32-bit implementation (or in 32-bit
mode on a 64-bit implementation) than it does in 64-bit mode. The addis instruction
with an unsigned integer in 32-bit mode cannot be directly ported to a 64-bit mode.
The code sequence to construct an unsigned integer in 64-bit mode is significantly
different from that needed in 32-bit mode.

Appendix A. Messages 505

../../cmds/aixcmds1/as.htm#SPTA1369968
../../cmds/aixcmds1/as.htm#SPTA6R5ZF8ECLIF
../../cmds/aixcmds1/as.htm#SPTBEFF691050JEFF
../../cmds/aixcmds1/as.htm#HDRD2E0SHAD

1252-174 Too many .machine ″push″ instructions without corresponding .machine ″pop″ instructions.

Cause The maximum size of the assembly stack has been exceeded. More than 100
entries have been added to the stack with .machine ″push″ but not removed with
.machine ″pop″.

Action Change the source program to eliminate the assembly stack overflow condition.
1252-175 A .machine ″pop″ is seen without a matching .machine ″push″.

Cause Pseudo-op .machine ″pop″ attempted to remove an entry from the assembly stack,
but the stack is empty. The source program may be missing a .machine ″push″.

Action Correct the source program.
1252-176 The .ref pseudo-op cannot appear in section <name>.

Cause A .ref pseudo-op appears in a dsect or a csect with a storage mapping class of BS
or UC, which is not permitted.

Action Change the source program.
1252-177 The operand of the .ref <name> is not a relocatable symbol.

Cause .ref pseudo-op operand name is one of the following items: a dsect name or label, a
csect name or label with a storage mapping class of BS or UC, a .set operand
which represents an item that is not relocatable, or a constant value.

Action Correct the source program.
1252-178 The maximum number of sections or symbols that an expression can refer to has been

exceeded.

Cause An expression refers to more than 50 control sections (csects or dsects).

Action Correct the source program.
1252-179 File# Line# Mode Name Loc Ctr Object Code Source

Cause This line defines the heading of the assembler listing file without the mnemonics
cross reference of POWER and PowerPC.

1252-180 File# Line# Mode Name Loc Ctr Object Code PowerPC Source

Cause This is one of the headings of the assembler listing file with the mnemonics
cross-reference of POWER and PowerPC. The assembler listing column labeled
PowerPC contains PowerPC mnemonics for statements where the source program
uses POWER mnemonics. This message is used for assembly modes of the
PowerPC category (including com, ppc, 601, and any).

1252-181 File# Line# Mode Name Loc Ctr Object Code POWER Source

Cause This is one of the headings of the assembler listing file with the mnemonics
cross-reference of POWER and PowerPC. The assembler listing column labeled
POWER contains POWER mnemonics for statements where the source program
uses PowerPC mnemonics. This message is used for assembly modes of the
POWER category (including pwr and pwr2).

1252-182 Storage mapping class <name> is not valid for .comm pseudo-op. RW is used as the storage
mapping class for the object code.

Cause The storage mapping class of the .comm pseudo-op is some value other than the
valid values (TD, RW, BS, and UC). The assembler reports this as a warning and
uses RW as the storage mapping class.

Action Change the source program.
1252-183 TD csect only allowed inside ″.toc″ scope.

Cause A csect with storage mapping class TD has been used without first using the .toc
pseudo-op.

Action Use the .toc pseudo-op before this instruction.

506 Assembler Language Reference

1252-184 TOC anchor must be defined to use a TOC-relative reference to <name>. Include a .toc
pseudo-op in the source.

Cause A TOC-relative reference is being used, but the TOC anchor is not defined. This can
happen if an external TD symbol is defined and used as a displacement in a D-form
instruction, but there is no .toc pseudo-op in the source program.

Action Use the .toc pseudo-op in the program.
1252-185 Warning: Operand is missing from pseudo-op.

Cause An operand required for pseudo-ops .byte, .vbyte, .short, .long, or .llong is
missing.

Action Provide an initial value for the data storage area created by these pseudo-ops.
1252-186 Warning: The maximum length of a stabstring is <number> characters. Extra characters have

been discarded.

Cause A stabstring is limited in length; the specified stabstring is greater than the maximum
lenght of a single string.

Action Split the string into 2 or more strings, continuing the information from one stabstring
to the next.

1252-187 Warning: The alignment of the current csect is less than the alignment specified with the
.align pseudo-op.

Cause The alignment of the csect is not as strict as the alignment required by the use of a
.align pseudo-op within that csect.

Action The .align pseudo-op specifies alignment of an item within the csect; the alignment
speicified for the csect should be equal to or greater than this value. For example, if
the csect requires word alignment, and a .llong within the csect requires double-word
alignment, there is a potential for the .llong value to ultimately (after linking) be only
word-aligned. This may not be what is intended by the user.

1252-188 Zero is used in the L operand for the <instruction> instruction.

Cause Some compare instructions allowed the L operand to be optional in 32-bit mode. In
64-bit mode, the operand is not optional.

Action All 4 operands should be specified for the instruction, or, alternatively, use an
extended mnemonic.

1252-189 Invalid value for environment variable OBJECT_MODE. Set the OBJECT_MODE environment
variable to 32 or 64 or use the -a32 or -a64 option.

Cause The value of the OBJECT_MODE environment variable is not recognized by the
assembler.

Action Set the OBJECT_MODE environment variable to either 32 or 64, or use the -a32 or
-a64 command line option. Any other value for the environment variable has no
meaning to the assembler.

1252-190 Invalid reference to label <name>: .function pseudo-op must refer to a csect.

Cause The .function pseudo-op referred to a local label.

Action The reference <name> should be the name (label) of a csect.
1252-191 Only <name> should be used for relocatable expressions.

Cause The expression used to initialize <name> contains references to externally defined
symbols (i.e. the symbols appear in .extern pseudo-op).

Action Verify that no externally defined symbols are contained within the expression
operands for <name>. Relocation in 32-bit mode can only be applied to 32-bit
quantities; in 64-bit mode relocation can only be applied to 64-bit quantities.

Appendix A. Messages 507

1252-192 Assembly mode is not specified. Set the OBJECT_MODE environment variable to 32 or 64 or
use the -a32 or -a64 option.

Cause The environment variable contains the value 32_64.

Action Set the OBJECT_MODE environment variable to either 32 or 64, or use the -a32 or
-a64 command line option.

1252-193 Values specified with the .set psuedo-op are treated as 32-bit signed numbers. Unexpected
results may occur when these values are used in a .llong expression.

Cause In 32-bit mode, an expression that results from the use of .set has been used to set
the initial value of a .llong.

Action For initializing .llong’s when in 32-bit mode, values are treated as 64-bit. If a .set
symbol whose most significant bit is set is used as part of the initialization, the value
may not be interpreted in a manner intended by the user. For example, the value
0xFFFF_0000 may have been intended to be a positive 64-bit quantity, but is a
negative 32-bit number which would be sign extended to become
0xFFFF_FFFF_FFFF_0000.

1252-194 Warning: The immediate value for instruction <instruction> is <number>. It may not be
portable to a 64-bit machine if this value is to be treated as an unsigned value.

Cause This is a alternate version of message 173; see above for more information.

508 Assembler Language Reference

Appendix B. Instruction Set Sorted by Mnemonic

In the Instruction Set Sorted by Mnemonic table the Implementation column contains the following
information:

Implementation Description
com Supported by POWER family, POWER2, and PowerPC implementations.
POWER family Supported only by POWER family and POWER2 implementations.
POWER2 Supported only by POWER2 implementations.
PowerPC Supported only by PowerPC architecture.
PPC opt. Defined only in PowerPC architecture and is an optional instruction.
603 only Supported only on the PowerPC 603 RISC Microprocessor

Instruction Set Sorted by Mnemonic

Mnemonic Instruction Implementation Format Primary Op
Code

Extended Op
Code

a[o][.] Add Carrying POWER family XO 31 10

abs[o][.] Absolute POWER family XO 31 360

add[o][.] Add PowerPC XO 31 266

addc[o][.] Add Carrying PowerPC XO 31 10

adde[o][.] Add Extended PowerPC XO 31 138

addi Add Immediate PowerPC D 14

addic Add Immediate
Carrying

PowerPC D 12

addic. Add Immediate
Carrying and
Record

PowerPC D 13

addis Add Immediate
Shifted

PowerPC D 15

addme[o][.] Add to Minus One
Extended

PowerPC XO 31 234

addze[o][.] Add to Zero
Extended

PowerPC XO 31 202

ae[o][.] Add Extended POWER family XO 31 138

ai Add Immediate POWER family D 12

ai. Add Immediate
and Record

POWER family D 13

ame[o][.] Add to Minus One
Extended

POWER family XO 31 234

and[.] AND com X 31 28

andc[.] AND with
Complement

com X 31 60

andi. AND Immediate PowerPC D 28

andil. AND Immediate
Lower

POWER family D 28

andis. AND Immediate
Shifted

PowerPC D 29

© Copyright IBM Corp. 1997, 2001 509

andiu. AND Immediate
Upper

POWER family D 29

aze[o][.] Add to Zero
Extended

POWER family XO 31 202

b[l][a] Branch com I 18

bc[l][a] Branch
Conditional

com B 16

bcc[l] Branch
Conditional to
Count Register

POWER family XL 19 528

bcctr[l] Branch
Conditional to
Count Register

PowerPC XL 19 528

bclr[l] Branch
Conditional Link
Register

PowerPC XL 19 16

bcr[l] Branch
Conditional
Register

POWER family XL 19 16

cal Compute Address
Lower

POWER family D 14

cau Compute Address
Upper

POWER family D 15

cax[o][.] Compute Address POWER family XO 31 266

clcs Cache Line
Compute Size

POWER family X 31 531

clf Cache Line Flush POWER family X 31 118

cli Cache Line
Invalidate

POWER family X 31 502

cmp Compare com X 31 0

cmpi Compare
Immediate

com D 11

cmpl Compare Logical com X 31 32

cmpli Compare Logical
Immediate

com D 10

cntlz[.] Count Leading
Zeros

POWER family X 31 26

cntlzw[.] Count Leading
Zeros Word

PowerPC X 31 26

crand Condition
Register AND

com XL 19 257

crandc Condition
Register AND with
Complement

com XL 19 129

creqv Condition
Register
Equivalent

com XL 19 289

crnand Condition
Register NAND

com XL 19 225

510 Assembler Language Reference

crnor Condition
Register NOR

com XL 19 33

cror Condition
Register OR

com XL 19 449

crorc Condition
Register OR with
Complement

com XL 19 417

crxor Condition
Register XOR

com XL 19 193

dcbf Data Cache Block
Flush

PowerPC X 31 86

dcbi Data Cache Block
Invalidate

PowerPC X 31 470

dcbst Data Cache Block
Store

PowerPC X 31 54

dcbt Data Cache Block
Touch

PowerPC X 31 278

dcbtst Data Cache Block
Touch for Store

PowerPC X 31 246

dcbz Data Cache Block
Set to Zero

PowerPC X 31 1014

dclst Data Cache Line
Store

POWER family X 31 630

dclz Data Cache Line
Set to Zero

POWER family X 31 1014

dcs Data Cache
Synchronize

POWER family X 31 598

div[o][.] Divide POWER family XO 31 331

divs[o][.] Divide Short POWER family XO 31 363

divw[o][.] Divide Word PowerPC XO 31 491

divwu[o][.] Divide Word
Unsigned

PowerPC XO 31 459

doz[o][.] Difference or Zero POWER family XO 31 264

dozi Difference or Zero
Immediate

POWER family D 09

eciwx External Control
in Word Indexed

PPC opt. X 31 310

ecowx External Control
out Word Indexed

PPC opt. X 31 438

eieio Enforce In-order
Execution of I/O

PowerPC X 31 854

eqv[.] Equivalent com X 31 284

exts[.] Extend Sign POWER family X 31 922

extsb[.] Extend Sign Byte PowerPC X 31 954

extsh[.] Extend Sign
Halfword

PowerPC XO 31 922

fa[.] Floating Add POWER family A 63 21

Appendix B. Instruction Set Sorted by Mnemonic 511

fabs[.] Floating Absolute
Value

com X 63 264

fadd[.] Floating Add PowerPC A 63 21

fadds[.] Floating Add
Single

PowerPC A 59 21

fcir[.] Floating Convert
to Integer Word

POWER family X 63 14

fcirz[.] Floating Convert
to Integer Word
with Round to
Zero

POWER family X 63 15

fcmpo Floating Compare
Ordered

com X 63 32

fcmpu Floating Compare
Unordered

com XL 63 0

fctiw[.] Floating Convert
to Integer Word

PowerPC X 63 14

fctiwz[.] Floating Convert
to Integer Word
with Round to
Zero

PowerPC XL 63 15

fd[.] Floating Divide POWER family A 63 18

fdiv[.] Floating Divide PowerPC A 63 18

fdivs[.] Floating Divide
Single

PowerPC A 59 18

fm[.] Floating Multiply POWER family A 63 25

fma[.] Floating
Multiply-Add

POWER family A 63 29

fmadd[.] Floating
Multiply-Add

PowerPC A 63 29

fmadds[.] Floating
Multiply-Add
Single

PowerPC A 59 29

fmr[.] Floating Move
Register

com X 63 72

fms[.] Floating
Multiply-Subtract

POWER family A 63 28

fmsub[.] Floating
Multiply-Subtract

PowerPC A 63 28

fmsubs[.] Floating
Multiply-Subtract
Single

PowerPC A 59 28

fmul[.] Floating Multiply PowerPC A 63 25

fmuls[.] Floating Multiply
Single

PowerPC A 59 25

fnabs[.] Floating Negative
Absolute Value

com X 63 136

fneg[.] Floating Negate com X 63 40

512 Assembler Language Reference

fnma[.] Floating Negative
Multiply-Add

POWER family A 63 31

fnmadd[.] Floating Negative
Multiply-Add

PowerPC A 63 31

fnmadds[.] Floating Negative
Multiply-Add
Single

PowerPC A 59 31

fnms[.] Floating Negative
Multiply-Subtract

POWER family A 63 30

fnmsub[.] Floating Negative
Multiply-Subtract

PowerPC A 63 30

fnmsubs[.] Floating Negative
Multiply-Subtract
Single

PowerPC A 59 30

fres[.] Floating
Reciprocal
Estimate Single

PPC opt. A 59 24

frsp[.] Floating Round to
Single Precision

com X 63 12

frsqrte[.] Floating
Reciprocal
Square Root
Estimate

PPC opt. A 63 26

fs[.] Floating Subtract POWER family A 63 20

fsel[.] Floating-Point
Select

PPC opt. A 63 23

fsqrt[.] Floating Square
Root

POWER2 A 63 22

fsub[.] Floating Subtract PowerPC A 63 20

fsubs[.] Floating Subtract
Single

PowerPC A 59 20

icbi Instruction Cache
Block Invalidate

PowerPC X 31 982

ics Instruction Cache
Synchronize

POWER family X 19 150

isync Instruction
Synchronize

PowerPC X 19 150

l Load POWER family D 32

lbrx Load
Byte-Reversed
Indexed

POWER family X 31 534

lbz Load Byte and
Zero

com D 34

lbzu Load Byte and
Zero with Update

com D 35

lbzux Load Byte and
Zero with Update
Indexed

com X 31 119

lbzx Load Byte and
Zero Indexed

com X 31 87

Appendix B. Instruction Set Sorted by Mnemonic 513

lfd Load
Floating-Point
Double

com D 50

lfdu Load
Floating-Point
Double with
Update

com D 51

lfdux Load
Floating-Point
Double with
Update Indexed

com X 31 631

lfdx Load
Floating-Point
Double Indexed

com X 31 599

lfq Load
Floating-Point
Quad

POWER2 D 56

lfqu Load
Floating-Point
Quad with Update

POWER2 D 57

lfqux Load
Floating-Point
Quad with Update
Indexed

POWER2 X 31 823

lfqx Load
Floating-Point
Quad Indexed

POWER2 X 31 791

lfs Load
Floating-Point
Single

com D 48

lfsu Load
Floating-Point
Single with
Update

com D 49

lfsux Load
Floating-Point
Single with
Update Indexed

com X 31 567

lfsx Load
Floating-Point
Single Indexed

com X 31 535

lha Load Half
Algebraic

com D 42

lhau Load Half
Algebraic with
Update

com D 43

lhaux Load Half
Algebraic with
Update Indexed

com X 31 375

lhax Load Half
Algebraic Indexed

com X 31 343

514 Assembler Language Reference

lhbrx Load Half
Byte-Reversed
Indexed

com X 31 790

lhz Load Half and
Zero

com D 40

lhzu Load Half and
Zero with Update

com D 41

lhzux Load Half and
Zero with Update
Indexed

com X 31 331

lhzx Load Half and
Zero Indexed

com X 31 279

lm Load Multiple POWER family D 46

lmw Load Multiple
Word

PowerPC D 46

lscbx Load String and
Compare Byte
Indexed

POWER family X 31 277

lsi Load String
Immediate

POWER family X 31 597

lswi Load String Word
Immediate

PowerPC X 31 597

lswx Load String Word
Indexed

PowerPC X 31 533

lsx Load String
Indexed

POWER family X 31 533

lu Load with Update POWER family D 33

lux Load with Update
Indexed

POWER family X 31 55

lwarx Load Word and
Reserve Indexed

PowerPC X 31 20

lwbrx Load Word
Byte-Reversed
Indexed

PowerPC X 31 534

lwz Load Word and
Zero

PowerPC D 32

lwzu Load Word with
Zero Update

PowerPC D 33

lwzux Load Word and
Zero with Update
Indexed

PowerPC X 31 55

lwzx Load Word and
Zero Indexed

PowerPC X 31 23

lx Load Indexed POWER family X 31 23

maskg[.] Mask Generate POWER family X 31 29

maskir[.] Mask Insert from
Register

POWER family X 31 541

mcrf Move Condition
Register Field

com XL 19 0

Appendix B. Instruction Set Sorted by Mnemonic 515

mcrfs Move to Condition
Register from
FPSCR

com X 63 64

mcrxr Move to Condition
Register from
XER

com X 31 512

mfcr Move from
Condition
Register

com X 31 19

mffs[.] Move from
FPSCR

com X 63 583

mfmsr Move from
Machine State
Register

com X 31 83

mfspr Move from
Special-Purpose
Register

com X 31 339

mfsr Move from
Segment Register

com X 31 595

mfsri Move from
Segment Register
Indirect

POWER family X 31 627

mfsrin Move from
Segment Register
Indirect

PowerPC X 31 659

mtcrf Move to Condition
Register Fields

com XFX 31 144

mtfsb0[.] Move to FPSCR
Bit 0

com X 63 70

mtfsb1[.] Move to FPSCR
Bit 1

com X 63 38

mtfsf[.] Move to FPSCR
Fields

com XFL 63 711

mtfsfi[.] Move to FPSCR
Field Immediate

com X 63 134

mtmsr Move to Machine
State Register

com X 31 146

mtspr Move to
Special-Purpose
Register

com X 31 467

mtsr Move to Segment
Register

com X 31 210

mtsri Move to Segment
Register Indirect

POWER family X 31 242

mtsrin Move to Segment
Register Indirect

PowerPC X 31 242

mul[o][.] Multiply POWER family XO 31 107

mulhw[.] Multiply High
Word

PowerPC XO 31 75

mulhwu[.] Multiply High
Word Unsigned

PowerPC XO 31 11

516 Assembler Language Reference

muli Multiply
Immediate

POWER family D 07

mulli Multiply Low
Immediate

PowerPC D 07

mullw[o][.] Multiply Low
Word

PowerPC XO 31 235

muls[o][.] Multiply Short POWER family XO 31 235

nabs[o][.] Negative Absolute POWER family XO 31 488

nand[.] NAND com X 31 476

neg[o][.] Negate com XO 31 104

nor[.] NOR com X 31 124

or[.] OR com X 31 444

orc[.] OR with
Complement

com X 31 412

ori OR Immediate PowerPC D 24

oril OR Immediate
Lower

POWER family D 24

oris OR Immediate
Shifted

PowerPC D 25

oriu OR Immediate
Upper

POWER family D 25

rac[.] Real Address
Compute

POWER family X 31 818

rfi Return from
Interrupt

com X 19 50

rfsvc Return from SVC POWER family X 19 82

rlimi[.] Rotate Left
Immediate then
Mask Insert

POWER family M 20

rlinm[.] Rotate Left
Immediate then
AND with Mask

POWER family M 21

rlmi[.] Rotate Left then
Mask Insert

POWER family M 22

rlnm[.] Rotate Left then
AND with Mask

POWER family M 23

rlwimi[.] Rotate Left Word
Immediate then
Mask Insert

PowerPC M 20

rlwinm[.] Rotate Left Word
Immediate then
AND with Mask

PowerPC M 21

rlwnm[.] Rotate Left Word
then AND with
Mask

PowerPC M 23

rrib[.] Rotate Right and
Insert Bit

POWER family X 31 537

sc System Call PowerPC SC 17

Appendix B. Instruction Set Sorted by Mnemonic 517

sf[o][.] Subtract from POWER family XO 31 08

sfe[o][.] Subtract from
Extended

POWER family XO 31 136

sfi Subtract from
Immediate

POWER family D 08

sfme[o][.] Subtract from
Minus One
Extended

POWER family XO 31 232

sfze[o][.] Subtract from
Zero Extended

POWER family XO 31 200

si Subtract
Immediate

com D 12

si. Subtract
Immediate and
Record

com D 13

sl[.] Shift Left POWER family X 31 24

sle[.] Shift Left
Extended

POWER family X 31 153

sleq[.] Shift Left
Extended with
MQ

POWER family X 31 217

sliq[.] Shift Left
Immediate with
MQ

POWER family X 31 184

slliq[.] Shift Left Long
Immediate with
MQ

POWER family X 31 248

sllq[.] Shift Left Long
with MQ

POWER family X 31 216

slq[.] Shift Left with MQ POWER family X 31 152

slw[.] Shift Left Word PowerPC X 31 24

sr[.] Shift Right POWER family X 31 536

sra[.] Shift Right
Algebraic

POWER family X 31 792

srai[.] Shift Right
Algebraic
Immediate

POWER family X 31 824

sraiq[.] Shift Right
Algebraic.,
Immediate with
MQ

POWER family X 31 952

sraq[.] Shift Right
Algebraic with MQ

POWER family X 31 920

sraw[.] Shift Right
Algebraic Word

PowerPC X 31 792

srawi[.] Shift Right
Algebraic Word
Immediate

PowerPC X 31 824

sre[.] Shift Right
Extended

POWER family X 31 665

518 Assembler Language Reference

srea[.] Shift Right
Extended
Algebraic

POWER family X 31 921

sreq[.] Shift Right
Extended with
MQ

POWER family X 31 729

sriq[.] Shift Right
Immediate with
MQ

POWER family X 31 696

srliq[.] Shift Right Long
Immediate with
MQ

POWER family X 31 760

srlq[.] Shift Right Long
with MQ

POWER family X 31 728

srq[.] Shift RIght with
MQ

POWER family X 31 664

srw[.] Shift Right Word PowerPC X 31 536

st Store POWER family D 36

stb Store Byte com D 38

stbrx Store
Byte-Reversed
Indexed

POWER family X 31 662

stbu Store Byte with
Update

com D 39

stbux Store Byte with
Update Indexed

com X 31 247

stbx Store Byte
Indexed

com X 31 215

stfd Store
Floating-Point
Double

com D 54

stfdu Store
Floating-Point
Double with
Update

com D 55

stfdux Store
Floating-Point
Double with
Update Indexed

com X 31 759

stfdx Store
Floating-Point
Double Indexed

com X 31 727

stfiwx Store
Floating-Point as
Integer Word
Indexed

PPC opt. X 31 983

stfq Store
Floating-Point
Quad

POWER2 DS 60

stfqu Store
Floating-Point
Quad with Update

POWER2 DS 61

Appendix B. Instruction Set Sorted by Mnemonic 519

stfqux Store
Floating-Point
Quad with Update
Indexed

POWER2 X 31 951

stfqx Store
Floating-Point
Quad Indexed

POWER2 X 31 919

stfs Store
Floating-Point
Single

com D 52

stfsu Store
Floating-Point
Single with
Update

com D 53

stfsux Store
Floating-Point
Single with
Update Indexed

com X 31 695

stfsx Store
Floating-Point
Single Indexed

com X 31 663

sth Store Half com D 44

sthbrx Store Half
Byte-Reverse
Indexed

com X 31 918

sthu Store Half with
Update

com D 45

sthux Store Half with
Update Indexed

com X 31 439

sthx Store Half
Indexed

com X 31 407

stm Store Multiple POWER family D 47

stmw Store Multiple
Word

PowerPC D 47

stsi Store String
Immediate

POWER family X 31 725

stswi Store String Word
Immediate

PowerPC X 31 725

stswx Store String Word
Indexed

PowerPC X 31 661

stsx Store String
Indexed

POWER family X 31 661

stu Store with Update POWER family D 37

stux Store with Update
Indexed

POWER family X 31 183

stw Store PowerPC D 36

stwbrx Store Word
Byte-Reversed
Indexed

PowerPC X 31 662

520 Assembler Language Reference

stwcx. Store Word
Conditional
Indexed

PowerPC X 31 150

stwu Store Word with
Update

PowerPC D 37

stwux Store Word with
Update Indexed

PowerPC X 31 183

stwx Store Word
Indexed

PowerPC X 31 151

stx Store Indexed POWER family X 31 151

subf[o][.] Subtract from PowerPC XO 31 40

subfc[o][.] Subtract from
Carrying

PowerPC XO 31 08

subfe[o][.] Subtract from
Extended

PowerPC XO 31 136

subfic Subtract from
Immediate
Carrying

PowerPC D 08

subfme[o][.] Subtract from
Minus One
Extended

PowerPC XO 31 232

subfze[o][.] Subtract from
Zero Extended

PowerPC XO 31 200

svc[l][a] Supervisor Call POWER family SC 17

sync Synchronize PowerPC X 31 598

t Trap POWER family X 31 04

ti Trap Immediate POWER family D 03

tlbi Translation
Look-aside Buffer
Invalidate Entry

POWER family X 31 306

tlbie Translation
Look-aside Buffer
Invalidate Entry

PPC opt. X 31 306

tlbld Load Data TLB
Entry

603 only X 31 978

tlbli Load Instruction
TLB Entry

603 only X 31 1010

tlbsync Translation
Look-aside Buffer
Synchronize

PPC opt. X 31 566

tw Trap Word PowerPC X 31 04

twi Trap Word
Immediate

PowerPC D 03

xor[.] XOR com X 31 316

xori XOR Immediate PowerPC D 26

xoril XOR Immediate
Lower

POWER family D 26

xoris XOR Immediate
Shift

PowerPC D 27

Appendix B. Instruction Set Sorted by Mnemonic 521

xoriu XOR Immediate
Upper

POWER family D 27

522 Assembler Language Reference

Appendix C. Instruction Set Sorted by Primary and Extended
Op Code

The Instruction Set Sorted by Primary and Extended Op Code table lists the instruction set, sorted first by
primary op code and then by extended op code. The table column Implementation contains the following
information:

Implementation Description
com Supported by POWER family, POWER2, and PowerPC implementations.
POWER family Supported only by POWER family and POWER2 implementations.
POWER2 Supported only by POWER2 implementations.
PowerPC Supported only by PowerPC architecture.
PPC opt. Defined only in PowerPC architecture and is an optional instruction.
603 only Supported only on the PowerPC 603 RISC Microprocessor

Instruction Set Sorted by Primary and Extended Op Code

Mnemonic Instruction Implementation Format Primary Op
Code

Extended Op
Code

ti Trap Immediate POWER family D 03

twi Trap Word
Immediate

PowerPC D 03

muli Multiply
Immediate

POWER family D 07

mulli Multiply Low
Immediate

PowerPC D 07

sfi Subtract from
Immediate

POWER family D 08

subfic Subtract from
Immediate
Carrying

PowerPC D 08

dozi Difference or Zero
Immediate

POWER family D 09

cmpli Compare Logical
Immediate

com D 10

cmpi Compare
Immediate

com D 11

addic Add Immediate
Carrying

PowerPC D 12

ai Add Immediate POWER family D 12

si Subtract
Immediate

com D 12

addic. Add Immediate
Carrying and
Record

PowerPC D 13

si. Subtract
Immediate and
Record

com D 13

ai. Add Immediate
and Record

POWER family D 13

addi Add Immediate PowerPC D 14

© Copyright IBM Corp. 1997, 2001 523

cal Compute Address
Lower

POWER family D 14

addis Add Immediate
Shifted

PowerPC D 15

cau Compute Address
Upper

POWER family D 15

bc[l][a] Branch
Conditional

com B 16

sc System Call PowerPC SC 17

svc[l][a] Supervisor Call POWER family SC 17

b[l][a] Branch com I 18

mcrf Move Condition
Register Field

com XL 19 0

bclr[l] Branch
Conditional Link
Register

PowerPC XL 19 16

bcr[l] Branch
Conditional
Register

POWER family XL 19 16

crnor Condition
Register NOR

com XL 19 33

rfi Return from
Interrupt

com X 19 50

rfsvc Return from SVC POWER family X 19 82

crandc Condition
Register AND with
Complement

com XL 19 129

ics Instruction Cache
Synchronize

POWER family X 19 150

isync Instruction
Synchronize

PowerPC X 19 150

crxor Condition
Register XOR

com XL 19 193

crnand Condition
Register NAND

com XL 19 225

crand Condition
Register AND

com XL 19 257

creqv Condition
Register
Equivalent

com XL 19 289

crorc Condition
Register OR with
Complement

com XL 19 417

cror Condition
Register OR

com XL 19 449

bcc[l] Branch
Conditional to
Count Register

POWER family XL 19 528

524 Assembler Language Reference

bcctr[l] Branch
Conditional to
Count Register

PowerPC XL 19 528

rlimi[.] Rotate Left
Immediate then
Mask Insert

POWER family M 20

rlwimi[.] Rotate Left Word
Immediate then
Mask Insert

PowerPC M 20

rlinm[.] Rotate Left
Immediate then
AND with Mask

POWER family M 21

rlwinm[.] Rotate Left Word
Immediate then
AND with Mask

PowerPC M 21

rlmi[.] Rotate Left then
Mask Insert

POWER family M 22

rlnm[.] Rotate Left then
AND with Mask

POWER family M 23

rlwnm[.] Rotate Left Word
then AND with
Mask

PowerPC M 23

ori OR Immediate PowerPC D 24

oril OR Immediate
Lower

POWER family D 24

oris OR Immediate
Shifted

PowerPC D 25

oriu OR Immediate
Upper

POWER family D 25

xori XOR Immediate PowerPC D 26

xoril XOR Immediate
Lower

POWER family D 26

xoris XOR Immediate
Shift

PowerPC D 27

xoriu XOR Immediate
Upper

POWER family D 27

andi. AND Immediate PowerPC D 28

andil. AND Immediate
Lower

POWER family D 28

andis. AND Immediate
Shifted

PowerPC D 29

andiu. AND Immediate
Upper

POWER family D 29

cmp Compare com X 31 0

t Trap POWER family X 31 04

tw Trap Word PowerPC X 31 04

sf[o][.] Subtract from POWER family XO 31 08

subfc[o][.] Subtract from
Carrying

PowerPC XO 31 08

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 525

a[o][.] Add Carrying POWER family XO 31 10

addc[o][.] Add Carrying PowerPC XO 31 10

mulhwu[.] Multiply High
Word Unsigned

PowerPC XO 31 11

mfcr Move from
Condition
Register

com X 31 19

lwarx Load Word and
Reserve Indexed

PowerPC X 31 20

lwzx Load Word and
Zero Indexed

PowerPC X 31 23

lx Load Indexed POWER family X 31 23

sl[.] Shift Left POWER family X 31 24

slw[.] Shift Left Word PowerPC X 31 24

cntlz[.] Count Leading
Zeros

POWER family X 31 26

cntlzw[.] Count Leading
Zeros Word

PowerPC X 31 26

and[.] AND com X 31 28

maskg[.] Mask Generate POWER family X 31 29

cmpl Compare Logical com X 31 32

subf[o][.] Subtract from PowerPC XO 31 40

dcbst Data Cache Block
Store

PowerPC X 31 54

lux Load with Update
Indexed

POWER family X 31 55

lwzux Load Word and
Zero with Update
Indexed

PowerPC X 31 55

andc[.] AND with
Complement

com X 31 60

mulhw[.] Multiply High
Word

PowerPC XO 31 75

mfmsr Move from
Machine State
Register

com X 31 83

dcbf Data Cache Block
Flush

PowerPC X 31 86

lbzx Load Byte and
Zero Indexed

com X 31 87

neg[o][.] Negate com XO 31 104

mul[o][.] Multiply POWER family XO 31 107

clf Cache Line Flush POWER family X 31 118

lbzux Load Byte and
Zero with Update
Indexed

com X 31 119

nor[.] NOR com X 31 124

526 Assembler Language Reference

sfe[o][.] Subtract from
Extended

POWER family XO 31 136

subfe[o][.] Subtract from
Extended

PowerPC XO 31 136

adde[o][.] Add Extended PowerPC XO 31 138

ae[o][.] Add Extended POWER family XO 31 138

mtcrf Move to Condition
Register Fields

com XFX 31 144

mtmsr Move to Machine
State Register

com X 31 146

stwcx. Store Word
Conditional
Indexed

PowerPC X 31 150

stwx Store Word
Indexed

PowerPC X 31 151

stx Store Indexed POWER family X 31 151

slq[.] Shift Left with MQ POWER family X 31 152

sle[.] Shift Left
Extended

POWER family X 31 153

stux Store with Update
Indexed

POWER family X 31 183

stwux Store Word with
Update Indexed

PowerPC X 31 183

sliq[.] Shift Left
Immediate with
MQ

POWER family X 31 184

sfze[o][.] Subtract from
Zero Extended

POWER family XO 31 200

subfze[o][.] Subtract from
Zero Extended

PowerPC XO 31 200

addze[o][.] Add to Zero
Extended

PowerPC XO 31 202

aze[o][.] Add to Zero
Extended

POWER family XO 31 202

mtsr Move to Segment
Register

com X 31 210

stbu Store Byte with
Update

com D 39

stbx Store Byte
Indexed

com X 31 215

sllq[.] Shift Left Long
with MQ

POWER family X 31 216

sleq[.] Shift Left
Extended with
MQ

POWER family X 31 217

sfme[o][.] Subtract from
Minus One
Extended

POWER family XO 31 232

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 527

subfme[o][.] Subtract from
Minus One
Extended

PowerPC XO 31 232

addme[o][.] Add to Minus One
Extended

PowerPC XO 31 234

ame[o][.] Add to Minus One
Extended

POWER family XO 31 234

mullw[o][.] Multiply Low
Word

PowerPC XO 31 235

muls[o][.] Multiply Short POWER family XO 31 235

mtsri Move to Segment
Register Indirect

POWER family X 31 242

mtsrin Move to Segment
Register Indirect

PowerPC X 31 242

dcbtst Data Cache Block
Touch for Store

PowerPC X 31 246

stbux Store Byte with
Update Indexed

com X 31 247

slliq[.] Shift Left Long
Immediate with
MQ

POWER family X 31 248

doz[o][.] Difference or Zero POWER family XO 31 264

add[o][.] Add PowerPC XO 31 266

cax[o][.] Compute Address POWER family XO 31 266

lscbx Load String and
Compare Byte
Indexed

POWER family X 31 277

dcbt Data Cache Block
Touch

PowerPC X 31 278

lhzx Load Half and
Zero Indexed

com X 31 279

eqv[.] Equivalent com X 31 284

tlbi Translation
Look-aside Buffer
Invalidate Entry

POWER family X 31 306

tlbie Translation
Look-aside Buffer
Invalidate Entry

PPC opt. X 31 306

eciwx External Control
in Word Indexed

PPC opt. X 31 310

xor[.] XOR com X 31 316

div[o][.] Divide POWER family XO 31 331

lhzux Load Half and
Zero with Update
Indexed

com X 31 331

mfspr Move from
Special-Purpose
Register

com X 31 339

528 Assembler Language Reference

lhax Load Half
Algebraic Indexed

com X 31 343

abs[o][.] Absolute POWER family XO 31 360

divs[o][.] Divide Short POWER family XO 31 363

lhaux Load Half
Algebraic with
Update Indexed

com X 31 375

sthx Store Half
Indexed

com X 31 407

orc[.] OR with
Complement

com X 31 412

ecowx External Control
out Word Indexed

PPC opt. X 31 438

sthux Store Half with
Update Indexed

com X 31 439

or[.] OR com X 31 444

divwu[o][.] Divide Word
Unsigned

PowerPC XO 31 459

mtspr Move to
Special-Purpose
Register

com X 31 467

dcbi Data Cache Block
Invalidate

PowerPC X 31 470

nand[.] NAND com X 31 476

nabs[o][.] Negative Absolute POWER family XO 31 488

divw[o][.] Divide Word PowerPC XO 31 491

cli Cache Line
Invalidate

POWER family X 31 502

mcrxr Move to Condition
Register from
XER

com X 31 512

clcs Cache Line
Compute Size

POWER family X 31 531

lswx Load String Word
Indexed

PowerPC X 31 533

lsx Load String
Indexed

POWER family X 31 533

lbrx Load
Byte-Reversed
Indexed

POWER family X 31 534

lwbrx Load Word
Byte-Reversed
Indexed

PowerPC X 31 534

lfsx Load
Floating-Point
Single Indexed

com X 31 535

sr[.] Shift Right POWER family X 31 536

srw[.] Shift Right Word PowerPC X 31 536

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 529

rrib[.] Rotate Right and
Insert Bit

POWER family X 31 537

maskir[.] Mask Insert from
Register

POWER family X 31 541

tlbsync Translation
Look-aside Buffer
Synchronize

PPC opt. X 31 566

lfsux Load
Floating-Point
Single with
Update Indexed

com X 31 567

mfsr Move from
Segment Register

com X 31 595

lsi Load String
Immediate

POWER family X 31 597

lswi Load String Word
Immediate

PowerPC X 31 597

dcs Data Cache
Synchronize

POWER family X 31 598

sync Synchronize PowerPC X 31 598

lfdx Load
Floating-Point
Double Indexed

com X 31 599

mfsri Move from
Segment Register
Indirect

POWER family X 31 627

dclst Data Cache Line
Store

POWER family X 31 630

lfdux Load
Floating-Point
Double with
Update Indexed

com X 31 631

mfsrin Move from
Segment Register
Indirect

PowerPC X 31 659

stswx Store String Word
Indexed

PowerPC X 31 661

stsx Store String
Indexed

POWER family X 31 661

stbrx Store
Byte-Reversed
Indexed

POWER family X 31 662

stwbrx Store Word
Byte-Reversed
Indexed

PowerPC X 31 662

stfsx Store
Floating-Point
Single Indexed

com X 31 663

srq[.] Shift RIght with
MQ

POWER family X 31 664

530 Assembler Language Reference

sre[.] Shift Right
Extended

POWER family X 31 665

stfsux Store
Floating-Point
Single with
Update Indexed

com X 31 695

sriq[.] Shift Right
Immediate with
MQ

POWER family X 31 696

stsi Store String
Immediate

POWER family X 31 725

stswi Store String Word
Immediate

PowerPC X 31 725

stfdx Store
Floating-Point
Double Indexed

com X 31 727

srlq[.] Shift Right Long
with MQ

POWER family X 31 728

sreq[.] Shift Right
Extended with
MQ

POWER family X 31 729

stfdux Store
Floating-Point
Double with
Update Indexed

com X 31 759

srliq[.] Shift Right Long
Immediate with
MQ

POWER family X 31 760

lhbrx Load Half
Byte-Reversed
Indexed

com X 31 790

lfqx Load
Floating-Point
Quad Indexed

POWER2 X 31 791

sra[.] Shift Right
Algebraic

POWER family X 31 792

sraw[.] Shift Right
Algebraic Word

PowerPC X 31 792

rac[.] Real Address
Compute

POWER family X 31 818

lfqux Load
Floating-Point
Quad with Update
Indexed

POWER2 X 31 823

srai[.] Shift Right
Algebraic
Immediate

POWER family X 31 824

srawi[.] Shift Right
Algebraic Word
Immediate

PowerPC X 31 824

eieio Enforce In-order
Execution of I/O

PowerPC X 31 854

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 531

sthbrx Store Half
Byte-Reverse
Indexed

com X 31 918

stfqx Store
Floating-Point
Quad Indexed

POWER2 X 31 919

sraq[.] Shift Right
Algebraic with MQ

POWER family X 31 920

srea[.] Shift Right
Extended
Algebraic

POWER family X 31 921

exts[.] Extend Sign POWER family X 31 922

extsh[.] Extend Sign
Halfword

PowerPC XO 31 922

stfqux Store
Floating-Point
Quad with Update
Indexed

POWER2 X 31 951

sraiq[.] Shift Right
Algebraic
Immediate with
MQ

POWER family X 31 952

extsb[.] Extend Sign Byte PowerPC X 31 954

tlbld Load Data TLB
Entry

603 only X 31 978

icbi Instruction Cache
Block Invalidate

PowerPC X 31 982

stfiwx Store
Floating-Point as
Integer Word
Indexed

PPC opt. X 31 983

tlbli Load Instruction
TLB Entry

603 only X 31 1010

dcbz Data Cache Block
Set to Zero

PowerPC X 31 1014

dclz Data Cache Line
Set to Zero

POWER family X 31 1014

l Load POWER family D 32

lwz Load Word and
Zero

PowerPC D 32

lu Load with Update POWER family D 33

lwzu Load Word with
Zero Update

PowerPC D 33

lbz Load Byte and
Zero

com D 34

lbzu Load Byte and
Zero with Update

com D 35

st Store POWER family D 36

stw Store PowerPC D 36

stu Store with Update POWER family D 37

532 Assembler Language Reference

stwu Store Word with
Update

PowerPC D 37

stb Store Byte com D 38

lhz Load Half and
Zero

com D 40

lhzu Load Half and
Zero with Update

com D 41

lha Load Half
Algebraic

com D 42

lhau Load Half
Algebraic with
Update

com D 43

sth Store Half com D 44

sthu Store Half with
Update

com D 45

lm Load Multiple POWER family D 46

lmw Load Multiple
Word

PowerPC D 46

stm Store Multiple POWER family D 47

stmw Store Multiple
Word

PowerPC D 47

lfs Load
Floating-Point
Single

com D 48

lfsu Load
Floating-Point
Single with
Update

com D 49

lfd Load
Floating-Point
Double

com D 50

lfdu Load
Floating-Point
Double with
Update

com D 51

stfs Store
Floating-Point
Single

com D 52

stfsu Store
Floating-Point
Single with
Update

com D 53

stfd Store
Floating-Point
Double

com D 54

stfdu Store
Floating-Point
Double with
Update

com D 55

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 533

lfq Load
Floating-Point
Quad

POWER2 D 56

lfqu Load
Floating-Point
Quad with Update

POWER2 D 57

fdivs[.] Floating Divide
Single

PowerPC A 59 18

fsubs[.] Floating Subtract
Single

PowerPC A 59 20

fadds[.] Floating Add
Single

PowerPC A 59 21

fres[.] Floating
Reciprocal
Estimate Single

PPC opt. A 59 24

fmuls[.] Floating Multiply
Single

PowerPC A 59 25

fmsubs[.] Floating
Multiply-Subtract
Single

PowerPC A 59 28

fmadds[.] Floating
Multiply-Add
Single

PowerPC A 59 29

fnmsubs[.] Floating Negative
Multiply-Subtract
Single

PowerPC A 59 30

fnmadds[.] Floating Negative
Multiply-Add
Single

PowerPC A 59 31

stfq Store
Floating-Point
Quad

POWER2 DS 60

stfqu Store
Floating-Point
Quad with Update

POWER2 DS 61

fcmpu Floating Compare
Unordered

com XL 63 0

frsp[.] Floating Round to
Single Precision

com X 63 12

fcir[.] Floating Convert
to Integer Word

POWER family X 63 14

fctiw[.] Floating Convert
to Integer Word

PowerPC X 63 14

fcirz[.] Floating Convert
to Integer Word
with Round to
Zero

POWER family X 63 15

fctiwz[.] Floating Convert
to Integer Word
with Round to
Zero

PowerPC XL 63 15

fd[.] Floating Divide POWER family A 63 18

534 Assembler Language Reference

fdiv[.] Floating Divide PowerPC A 63 18

fs[.] Floating Subtract POWER family A 63 20

fsub[.] Floating Subtract PowerPC A 63 20

fa[.] Floating Add POWER family A 63 21

fadd[.] Floating Add PowerPC A 63 21

fsqrt[.] Floating Square
Root

POWER2 A 63 22

fsel[.] Floating-Point
Select

PPC opt. A 63 23

fm[.] Floating Multiply POWER family A 63 25

fmul[.] Floating Multiply PowerPC A 63 25

frsqrte[.] Floating
Reciprocal
Square Root
Estimate

PPC opt. A 63 26

fms[.] Floating
Multiply-Subtract

POWER family A 63 28

fmsub[.] Floating
Multiply-Subtract

PowerPC A 63 28

fma[.] Floating
Multiply-Add

POWER family A 63 29

fmadd[.] Floating
Multiply-Add

PowerPC A 63 29

fnms[.] Floating Negative
Multiply-Subtract

POWER family A 63 30

fnmsub[.] Floating Negative
Multiply-Subtract

PowerPC A 63 30

fnma[.] Floating Negative
Multiply-Add

POWER family A 63 31

fnmadd[.] Floating Negative
Multiply-Add

PowerPC A 63 31

fcmpo Floating Compare
Ordered

com X 63 32

mtfsb1[.] Move to FPSCR
Bit 1

com X 63 38

fneg[.] Floating Negate com X 63 40

mcrfs Move to Condition
Register from
FPSCR

com X 63 64

mtfsb0[.] Move to FPSCR
Bit 0

com X 63 70

fmr[.] Floating Move
Register

com X 63 72

mtfsfi[.] Move to FPSCR
Field Immediate

com X 63 134

fnabs[.] Floating Negative
Absolute Value

com X 63 136

Appendix C. Instruction Set Sorted by Primary and Extended Op Code 535

fabs[.] Floating Absolute
Value

com X 63 264

mffs[.] Move from
FPSCR

com X 63 583

mtfsf[.] Move to FPSCR
Fields

com XFL 63 711

536 Assembler Language Reference

Appendix D. Instructions Common to POWER family,
POWER2, and PowerPC
Instructions Common to POWER family, POWER2, and PowerPC

Mnemonic Instruction Format Primary Op Code Extended Op Code

and[.] AND X 31 28

andc[.] AND with
Complement

X 31 60

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical
Immediate

D 10

crand Condition Register
AND

XL 19 257

crandc Condition Register
AND with
Complement

XL 19 129

creqv Condition Register
Equivalent

XL 19 289

crnand Condition Register
NAND

XL 19 225

crnor Condition Register
NOR

XL 19 33

cror Condition Register
OR

XL 19 449

crorc Condition Register
OR with Complement

XL 19 417

crxor Condition Register
XOR

XL 19 193

eciwx External Control in
Word Indexed

X 31 310

ecowx External Control out
Word Indexed

X 31 438

eqv[.] Equivalent X 31 284

fabs[.] Floating Absolute
Value

X 63 264

fcmpo Floating Compare
Ordered

X 63 32

fcmpu Floating Compare
Unordered

XL 63 0

fmr[.] Floating Move
Register

X 63 72

fnabs[.] Floating Negative
Absolute Value

X 63 136

© Copyright IBM Corp. 1997, 2001 537

fneg[.] Floating Negate X 63 40

frsp[.] Floating Round to
Single Precision

X 63 12

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero
with Update

D 35

lbzux Load Byte and Zero
with Update Indexed

X 31 119

lbzx Load Byte and Zero
Indexed

X 31 87

lfd Load Floating-Point
Double

D 50

lfdu Load Floating-Point
Double with Update

D 51

lfdux Load Floating-Point
Double with Update
Indexed

X 31 631

lfdx Load Floating-Point
Double Indexed

X 31 599

lfs Load Floating-Point
Single

D 48

lfsu Load Floating-Point
Single with Update

D 49

lfsux Load Floating-Point
Single with Update
Indexed

X 31 567

lfsx Load Floating-Point
Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic
with Update

D 43

lhaux Load Half Algebraic
with Update Indexed

X 31 375

lhax Load Half Algebraic
Indexed

X 31 343

lhbrx Load Half
Byte-Reversed
Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero
with Update

D 41

lhzux Load Half and Zero
with Update Indexed

X 31 331

lhzx Load Half and Zero
Indexed

X 31 279

mcrf Move Condition
Register Field

XL 19 0

mcrfs Move to Condition
Register from FPSCR

X 63 64

538 Assembler Language Reference

mcrxr Move to Condition
Register from XER

X 31 512

mfcr Move from Condition
Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine
State Register

X 31 83

mfspr Move from
Special-Purpose
Register

X 31 339

mfsr Move from Segment
Register

X 31 595

mtcrf Move to Condition
Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR
Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field
Immediate

X 63 134

mtmsr Move to Machine
State Register

X 31 146

mtspr Move to
Special-Purpose
Register

X 31 467

mtsr Move to Segment
Register

X 31 210

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

rfi Return from Interrupt X 19 50

si Subtract Immediate D 12

si. Subtract Immediate
and Record

D 13

stb Store Byte D 38

stbu Store Byte with
Update

D 39

stbux Store Byte with
Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point
Double

D 54

stfdu Store Floating-Point
Double with Update

D 55

Appendix D. Instructions Common to POWER family, POWER2, and PowerPC 539

stfdux Store Floating-Point
Double with Update
Indexed

X 31 759

stfdx Store Floating-Point
Double Indexed

X 31 727

stfs Store Floating-Point
Single

D 52

stfsu Store Floating-Point
Single with Update

D 53

stfsux Store Floating-Point
Single with Update
Indexed

X 31 695

stfsx Store Floating-Point
Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half
Byte-Reverse Indexed

X 31 918

sthu Store Half with
Update

D 45

sthux Store Half with
Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

xor[.] XOR X 31 316

540 Assembler Language Reference

Appendix E. POWER family and POWER2 Instructions

In the following POWER family and POWER2 Instructions table, Instructions that are supported only in
POWER2 implementations are indicated by ″POWER2″ in the POWER2 Only column:

POWER family and POWER2 Instructions

Mnemonic Instruction POWER2 Only Format Primary Op
Code

Extended Op
Code

a[o][.] Add Carrying XO 31 10

abs[o][.] Absolute XO 31 360

ae[o][.] Add Extended XO 31 138

ai Add Immediate D 12

ai. Add Immediate
and Record

D 13

ame[o][.] Add to Minus One
Extended

XO 31 234

and[.] AND X 31 28

andc[.] AND with
Complement

X 31 60

andil. AND Immediate
Lower

D 28

andiu. AND Immediate
Upper

D 29

aze[o][.] Add to Zero
Extended

XO 31 202

b[l][a] Branch I 18

bc[l][a] Branch
Conditional

B 16

bcc[l] Branch
Conditional to
Count Register

XL 19 528

bcr[l] Branch
Conditional
Register

XL 19 16

cal Compute Address
Lower

D 14

cau Compute Address
Upper

D 15

cax[o][.] Compute Address XO 31 266

clcs Cache Line
Compute Size

X 31 531

clf Cache Line Flush X 31 118

cli Cache Line
Invalidate

X 31 502

cmp Compare X 31 0

cmpi Compare
Immediate

D 11

cmpl Compare Logical X 31 32

© Copyright IBM Corp. 1997, 2001 541

cmpli Compare Logical
Immediate

D 10

cntlz[.] Count Leading
Zeros

X 31 26

crand Condition
Register AND

XL 19 257

crandc Condition
Register AND with
Complement

XL 19 129

creqv Condition
Register
Equivalent

XL 19 289

crnand Condition
Register NAND

XL 19 225

crnor Condition
Register NOR

XL 19 33

cror Condition
Register OR

XL 19 449

crorc Condition
Register OR with
Complement

XL 19 417

crxor Condition
Register XOR

XL 19 193

dclst Data Cache Line
Store

X 31 630

dclz Data Cache Line
Set to Zero

X 31 1014

dcs Data Cache
Synchronize

X 31 598

div[o][.] Divide XO 31 331

divs[o][.] Divide Short XO 31 363

doz[o][.] Difference or Zero XO 31 264

dozi Difference or Zero
Immediate

D 09

eciwx External Control
in Word Indexed

X 31 310

ecowx External Control
out Word Indexed

X 31 438

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute
Value

X 63 264

fcir[.] Floating Convert
to Integer Word

X 63 14

fcirz[.] Floating Convert
to Integer Word
with Round to
Zero

X 63 15

542 Assembler Language Reference

fcmpo Floating Compare
Ordered

X 63 32

fcmpu Floating Compare
Unordered

XL 63 0

fd[.] Floating Divide A 63 18

fm[.] Floating Multiply A 63 25

fma[.] Floating
Multiply-Add

A 63 29

fmr[.] Floating Move
Register

X 63 72

fms[.] Floating
Multiply-Subtract

A 63 28

fnabs[.] Floating Negative
Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative
Multiply-Add

A 63 31

fnms[.] Floating Negative
Multiply-Subtract

A 63 30

frsp[.] Floating Round to
Single Precision

X 63 12

fs[.] Floating Subtract A 63 20

fsqrt[.] Floating Square
Root

POWER2 A 63 22

ics Instruction Cache
Synchronize

X 19 150

l Load D 32

lbrx Load
Byte-Reversed
Indexed

X 31 534

lbz Load Byte and
Zero

D 34

lbzu Load Byte and
Zero with Update

D 35

lbzux Load Byte and
Zero with Update
Indexed

X 31 119

lbzx Load Byte and
Zero Indexed

X 31 87

lfd Load
Floating-Point
Double

D 50

lfdu Load
Floating-Point
Double with
Update

D 51

lfdux Load
Floating-Point
Double with
Update Indexed

X 31 631

Appendix E. POWER family and POWER2 Instructions 543

lfdx Load
Floating-Point
Double Indexed

X 31 599

lfq Load
Floating-Point
Quad

POWER2 D 56

lfqu Load
Floating-Point
Quad with Update

POWER2 D 57

lfqux Load
Floating-Point
Quad with Update
Indexed

POWER2 X 31 823

lfqx Load
Floating-Point
Quad Indexed

POWER2 X 31 791

lfs Load
Floating-Point
Single

D 48

lfsu Load
Floating-Point
Single with
Update

D 49

lfsux Load
Floating-Point
Single with
Update Indexed

X 31 567

lfsx Load
Floating-Point
Single Indexed

X 31 535

lha Load Half
Algebraic

D 42

lhau Load Half
Algebraic with
Update

D 43

lhaux Load Half
Algebraic with
Update Indexed

X 31 375

lhax Load Half
Algebraic Indexed

X 31 343

lhbrx Load Half
Byte-Reversed
Indexed

X 31 790

lhz Load Half and
Zero

D 40

lhzu Load Half and
Zero with Update

D 41

lhzux Load Half and
Zero with Update
Indexed

X 31 331

lhzx Load Half and
Zero Indexed

X 31 279

544 Assembler Language Reference

lm Load Multiple D 46

lscbx Load String and
Compare Byte
Indexed

X 31 277

lsi Load String
Immediate

X 31 597

lsx Load String
Indexed

X 31 533

lu Load with Update D 33

lux Load with Update
Indexed

X 31 55

lx Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert from
Register

X 31 541

mcrf Move Condition
Register Field

XL 19 0

mcrfs Move to Condition
Register from
FPSCR

X 63 64

mcrxr Move to Condition
Register from
XER

X 31 512

mfcr Move from
Condition
Register

X 31 19

mffs[.] Move from
FPSCR

X 63 583

mfmsr Move from
Machine State
Register

X 31 83

mfspr Move from
Special-Purpose
Register

X 31 339

mfsr Move from
Segment Register

X 31 595

mfsri Move from
Segment Register
Indirect

X 31 627

mtcrf Move to Condition
Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR
Bit 0

X 63 70

mtfsb1[.] Move to FPSCR
Bit 1

X 63 38

mtfsf[.] Move to FPSCR
Fields

XFL 63 711

mtfsfi[.] Move to FPSCR
Field Immediate

X 63 134

Appendix E. POWER family and POWER2 Instructions 545

mtmsr Move to Machine
State Register

X 31 146

mtspr Move to
Special-Purpose
Register

X 31 467

mtsr Move to Segment
Register

X 31 210

mtsri Move to Segment
Register Indirect

X 31 242

mul[o][.] Multiply XO 31 107

muli Multiply
Immediate

D 07

muls[o][.] Multiply Short XO 31 235

nabs[o][.] Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with
Complement

X 31 412

oril OR Immediate
Lower

D 24

oriu OR Immediate
Upper

D 25

rac[.] Real Address
Compute

X 31 818

rfi Return from
Interrupt

X 19 50

rfsvc Return from SVC X 19 82

rlimi[.] Rotate Left
Immediate then
Mask Insert

M 20

rlinm[.] Rotate Left
Immediate then
AND with Mask

M 21

rlmi[.] Rotate Left then
Mask Insert

M 22

rlnm[.] Rotate Left then
AND with Mask

M 23

rrib[.] Rotate Right and
Insert Bit

X 31 537

sf[o][.] Subtract from XO 31 08

sfe[o][.] Subtract from
Extended

XO 31 136

sfi Subtract from
Immediate

D 08

546 Assembler Language Reference

sfme[o][.] Subtract from
Minus One
Extended

XO 31 232

sfze[o][.] Subtract from
Zero Extended

XO 31 200

si Subtract
Immediate

D 12

si. Subtract
Immediate and
Record

D 13

sl[.] Shift Left X 31 24

sle[.] Shift Left
Extended

X 31 153

sleq[.] Shift Left
Extended with
MQ

X 31 217

sliq[.] Shift Left
Immediate with
MQ

X 31 184

slliq[.] Shift Left Long
Immediate with
MQ

X 31 248

sllq[.] Shift Left Long
with MQ

X 31 216

slq[.] Shift Left with MQ X 31 152

sr[.] Shift Right X 31 536

sra[.] Shift Right
Algebraic

X 31 792

srai[.] Shift Right
Algebraic
Immediate

X 31 824

sraiq[.] Shift Right
Algebraic
Immediate with
MQ

X 31 952

sraq[.] Shift Right
Algebraic with MQ

X 31 920

sre[.] Shift Right
Extended

X 31 665

srea[.] Shift Right
Extended
Algebraic

X 31 921

sreq[.] Shift Right
Extended with
MQ

X 31 729

sriq[.] Shift Right
Immediate with
MQ

X 31 696

srliq[.] Shift Right Long
Immediate with
MQ

X 31 760

Appendix E. POWER family and POWER2 Instructions 547

srlq[.] Shift Right Long
with MQ

X 31 728

srq[.] Shift RIght with
MQ

X 31 664

st Store D 36

stb Store Byte D 38

stbrx Store
Byte-Reversed
Indexed

X 31 662

stbu Store Byte with
Update

D 39

stbux Store Byte with
Update Indexed

X 31 247

stbx Store Byte
Indexed

X 31 215

stfd Store
Floating-Point
Double

D 54

stfdu Store
Floating-Point
Double with
Update

D 55

stfdux Store
Floating-Point
Double with
Update Indexed

X 31 759

stfdx Store
Floating-Point
Double Indexed

X 31 727

stfq Store
Floating-Point
Quad

POWER2 DS 60

stfqu Store
Floating-Point
Quad with Update

POWER2 DS 61

stfqux Store
Floating-Point
Quad with Update
Indexed

POWER2 X 31 951

stfqx Store
Floating-Point
Quad Indexed

POWER2 X 31 919

stfs Store
Floating-Point
Single

D 52

stfsu Store
Floating-Point
Single with
Update

D 53

548 Assembler Language Reference

stfsux Store
Floating-Point
Single with
Update Indexed

X 31 695

stfsx Store
Floating-Point
Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half
Byte-Reverse
Indexed

X 31 918

sthu Store Half with
Update

D 45

sthux Store Half with
Update Indexed

X 31 439

sthx Store Half
Indexed

X 31 407

stm Store Multiple D 47

stsi Store String
Immediate

X 31 725

stsx Store String
Indexed

X 31 661

stu Store with Update D 37

stux Store with Update
Indexed

X 31 183

stx Store Indexed X 31 151

svc[l][a] Supervisor Call SC 17

t Trap X 31 04

ti Trap Immediate D 03

tlbi Translation
Look-aside Buffer
Invalidate Entry

X 31 306

xor[.] XOR X 31 316

xoril XOR Immediate
Lower

D 26

xoriu XOR Immediate
Upper

D 27

Appendix E. POWER family and POWER2 Instructions 549

550 Assembler Language Reference

Appendix F. PowerPC Instructions
PowerPC Instructions

Mnemonic Instruction Format Primary Op Code Extended Op Code

add[o][.] Add XO 31 266

addc[o][.] Add Carrying XO 31 10

adde[o][.] Add Extended XO 31 138

addi Add Immediate D 14

addic Add Immediate
Carrying

D 12

addic. Add Immediate
Carrying and Record

D 13

addis Add Immediate
Shifted

D 15

addme[o][.] Add to Minus One
Extended

XO 31 234

addze[o][.] Add to Zero Extended XO 31 202

and[.] AND X 31 28

andc[.] AND with
Complement

X 31 60

andi. AND Immediate D 28

andis. AND Immediate
Shifted

D 29

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

bcctr[l] Branch Conditional to
Count Register

XL 19 528

bclr[l] Branch Conditional
Link Register

XL 19 16

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical
Immediate

D 10

cntlzw[.] Count Leading Zeros
Word

X 31 26

crand Condition Register
AND

XL 19 257

crandc Condition Register
AND with
Complement

XL 19 129

creqv Condition Register
Equivalent

XL 19 289

crnand Condition Register
NAND

XL 19 225

crnor Condition Register
NOR

XL 19 33

© Copyright IBM Corp. 1997, 2001 551

cror Condition Register
OR

XL 19 449

crorc Condition Register
OR with Complement

XL 19 417

crxor Condition Register
XOR

XL 19 193

dcbf Data Cache Block
Flush

X 31 86

dcbi Data Cache Block
Invalidate

X 31 470

dcbst Data Cache Block
Store

X 31 54

dcbt Data Cache Block
Touch

X 31 278

dcbtst Data Cache Block
Touch for Store

X 31 246

dcbz Data Cache Block Set
to Zero

X 31 1014

divw[o][.] Divide Word XO 31 491

divwu[o][.] Divide Word
Unsigned

XO 31 459

eciwx External Control in
Word Indexed (opt.)

X 31 310

ecowx External Control out
Word Indexed (opt.)

X 31 438

eieio Enforce In-order
Execution of I/O

X 31 854

eqv[.] Equivalent X 31 284

extsb[.] Extend Sign Byte X 31 954

extsh[.] Extend Sign Halfword XO 31 922

fabs[.] Floating Absolute
Value

X 63 264

fadd[.] Floating Add A 63 21

fadds[.] Floating Add Single A 59 21

fcmpo Floating Compare
Ordered

X 63 32

fcmpu Floating Compare
Unordered

XL 63 0

fctiw[.] Floating Convert to
Integer Word

X 63 14

fctiwz[.] Floating Convert to
Integer Word with
Round to Zero

XL 63 15

fdiv[.] Floating Divide A 63 18

fdivs[.] Floating Divide Single A 59 18

fmadd[.] Floating Multiply-Add A 63 29

fmadds[.] Floating Multiply-Add
Single

A 59 29

552 Assembler Language Reference

fmr[.] Floating Move
Register

X 63 72

fmsub[.] Floating
Multiply-Subtract

A 63 28

fmsubs[.] Floating
Multiply-Subtract
Single

A 59 28

fmul[.] Floating Multiply A 63 25

fmuls[.] Floating Multiply
Single

A 59 25

fnabs[.] Floating Negative
Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnmadd[.] Floating Negative
Multiply-Add

A 63 31

fnmadds[.] Floating Negative
Multiply-Add Single

A 59 31

fnmsub[.] Floating Negative
Multiply-Subtract

A 63 30

fnmsubs[.] Floating Negative
Multiply-Subtract
Single

A 59 30

fres[.] Floating Reciprocal
Estimate Single
(optional)

A 59 24

frsp[.] Floating Round to
Single Precision

X 63 12

frsqrte[.] Floating Reciprocal
Square Root Estimate
(optional)

A 63 26

fsel[.] Floating-Point Select
(optional)

A 63 23

fsub[.] Floating Subtract A 63 20

fsubs[.] Floating Subtract
Single

A 59 20

icbi Instruction Cache
Block Invalidate

X 31 982

isync Instruction
Synchronize

X 19 150

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero
with Update

D 35

lbzux Load Byte and Zero
with Update Indexed

X 31 119

lbzx Load Byte and Zero
Indexed

X 31 87

lfd Load Floating-Point
Double

D 50

Appendix F. PowerPC Instructions 553

lfdu Load Floating-Point
Double with Update

D 51

lfdux Load Floating-Point
Double with Update
Indexed

X 31 631

lfdx Load Floating-Point
Double Indexed

X 31 599

lfs Load Floating-Point
Single

D 48

lfsu Load Floating-Point
Single with Update

D 49

lfsux Load Floating-Point
Single with Update
Indexed

X 31 567

lfsx Load Floating-Point
Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic
with Update

D 43

lhaux Load Half Algebraic
with Update Indexed

X 31 375

lhax Load Half Algebraic
Indexed

X 31 343

lhbrx Load Half
Byte-Reversed
Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero
with Update

D 41

lhzux Load Half and Zero
with Update Indexed

X 31 331

lhzx Load Half and Zero
Indexed

X 31 279

lmw Load Multiple Word D 46

lswi Load String Word
Immediate

X 31 597

lswx Load String Word
Indexed

X 31 533

lwarx Load Word and
Reserve Indexed

X 31 20

lwbrx Load Word
Byte-Reversed
Indexed

X 31 534

lwz Load Word and Zero D 32

lwzu Load Word with Zero
Update

D 33

lwzux Load Word and Zero
with Update Indexed

X 31 55

554 Assembler Language Reference

lwzx Load Word and Zero
Indexed

X 31 23

mcrf Move Condition
Register Field

XL 19 0

mcrfs Move to Condition
Register from FPSCR

X 63 64

mcrxr Move to Condition
Register from XER

X 31 512

mfcr Move from Condition
Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine
State Register

X 31 83

mfspr Move from
Special-Purpose
Register

X 31 339

mfsr Move from Segment
Register

X 31 595

mfsrin Move from Segment
Register Indirect

X 31 659

mtcrf Move to Condition
Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR
Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field
Immediate

X 63 134

mtmsr Move to Machine
State Register

X 31 146

mtspr Move to
Special-Purpose
Register

X 31 467

mtsr Move to Segment
Register

X 31 210

mtsrin Move to Segment
Register Indirect

X 31 242

mulhw[.] Multiply High Word XO 31 75

mulhwu[.] Multiply High Word
Unsigned

XO 31 11

mulli Multiply Low
Immediate

D 07

mullw[o][.] Multiply Low Word XO 31 235

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

Appendix F. PowerPC Instructions 555

ori OR Immediate D 24

oris OR Immediate Shifted D 25

rfi Return from Interrupt X 19 50

rlwimi[.] Rotate Left Word
Immediate then Mask
Insert

M 20

rlwinm[.] Rotate Left Word
Immediate then AND
with Mask

M 21

rlwnm[.] Rotate Left Word then
AND with Mask

M 23

sc System Call SC 17

si Subtract Immediate D 12

si. Subtract Immediate
and Record

D 13

slw[.] Shift Left Word X 31 24

sraw[.] Shift Right Algebraic
Word

X 31 792

srawi[.] Shift Right Algebraic
Word Immediate

X 31 824

srw[.] Shift Right Word X 31 536

stb Store Byte D 38

stbu Store Byte with
Update

D 39

stbux Store Byte with
Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point
Double

D 54

stfdu Store Floating-Point
Double with Update

D 55

stfdux Store Floating-Point
Double with Update
Indexed

X 31 759

stfdx Store Floating-Point
Double Indexed

X 31 727

stfiwx Store Floating-Point
as Integer Word
Indexed (optional)

X 31 983

stfs Store Floating-Point
Single

D 52

stfsu Store Floating-Point
Single with Update

D 53

stfsux Store Floating-Point
Single with Update
Indexed

X 31 695

stfsx Store Floating-Point
Single Indexed

X 31 663

556 Assembler Language Reference

sth Store Half D 44

sthbrx Store Half
Byte-Reverse Indexed

X 31 918

sthu Store Half with
Update

D 45

sthux Store Half with
Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

stmw Store Multiple Word D 47

stswi Store String Word
Immediate

X 31 725

stswx Store String Word
Indexed

X 31 661

stw Store D 36

stwbrx Store Word
Byte-Reversed
Indexed

X 31 662

stwcx. Store Word
Conditional Indexed

X 31 150

stwu Store Word with
Update

D 37

stwux Store Word with
Update Indexed

X 31 183

stwx Store Word Indexed X 31 151

subf[o][.] Subtract from XO 31 40

subfc[o][.] Subtract from
Carrying

XO 31 08

subfe[o][.] Subtract from
Extended

XO 31 136

subfic Subtract from
Immediate Carrying

D 08

subfme[o][.] Subtract from Minus
One Extended

XO 31 232

subfze[o][.] Subtract from Zero
Extended

XO 31 200

sync Synchronize X 31 598

tlbie Translation
Look-aside Buffer
Invalidate Entry
(optional)

X 31 306

tlbsync Translation
Look-aside Buffer
Synchronize (optional)

X 31 566

tw Trap Word X 31 04

twi Trap Word Immediate D 03

xor[.] XOR X 31 316

xori XOR Immediate D 26

xoris XOR Immediate Shift D 27

Appendix F. PowerPC Instructions 557

558 Assembler Language Reference

Appendix G. PowerPC 601 RISC Microprocessor Instructions
PowerPC 601 RISC Microprocessor Instructions

Mnemonic Instruction Format Primary Op Code Extended Op Code

a[o][.] Add Carrying XO 31 10

abs[o][.] Absolute XO 31 360

add[o][.] Add XO 31 266

addc[o][.] Add Carrying XO 31 10

adde[o][.] Add Extended XO 31 138

addi Add Immediate D 14

addic Add Immediate
Carrying

D 12

addic. Add Immediate
Carrying and Record

D 13

addis Add Immediate
Shifted

D 15

addme[o][.] Add to Minus One
Extended

XO 31 234

addze[o][.] Add to Zero Extended XO 31 202

ae[o][.] Add Extended XO 31 138

ai Add Immediate D 12

ai. Add Immediate and
Record

D 13

ame[o][.] Add to Minus One
Extended

XO 31 234

and[.] AND X 31 28

andc[.] AND with
Complement

X 31 60

andi. AND Immediate D 28

andil. AND Immediate
Lower

D 28

andis. AND Immediate
Shifted

D 29

andiu. AND Immediate
Upper

D 29

aze[o][.] Add to Zero Extended XO 31 202

b[l][a] Branch I 18

bc[l][a] Branch Conditional B 16

bcc[l] Branch Conditional to
Count Register

XL 19 528

bcctr[l] Branch Conditional to
Count Register

XL 19 528

bclr[l] Branch Conditional
Link Register

XL 19 16

bcr[l] Branch Conditional
Register

XL 19 16

© Copyright IBM Corp. 1997, 2001 559

cal Compute Address
Lower

D 14

cau Compute Address
Upper

D 15

cax[o][.] Compute Address XO 31 266

clcs Cache Line Compute
Size

X 31 531

cmp Compare X 31 0

cmpi Compare Immediate D 11

cmpl Compare Logical X 31 32

cmpli Compare Logical
Immediate

D 10

cntlz[.] Count Leading Zeros X 31 26

cntlzw[.] Count Leading Zeros
Word

X 31 26

crand Condition Register
AND

XL 19 257

crandc Condition Register
AND with
Complement

XL 19 129

creqv Condition Register
Equivalent

XL 19 289

crnand Condition Register
NAND

XL 19 225

crnor Condition Register
NOR

XL 19 33

cror Condition Register
OR

XL 19 449

crorc Condition Register
OR with Complement

XL 19 417

crxor Condition Register
XOR

XL 19 193

dcbf Data Cache Block
Flush

X 31 86

dcbi Data Cache Block
Invalidate

X 31 470

dcbst Data Cache Block
Store

X 31 54

dcbt Data Cache Block
Touch

X 31 278

dcbtst Data Cache Block
Touch for Store

X 31 246

dcbz Data Cache Block Set
to Zero

X 31 1014

dcs Data Cache
Synchronize

X 31 598

div[o][.] Divide XO 31 331

divs[o][.] Divide Short XO 31 363

560 Assembler Language Reference

divw[o][.] Divide Word XO 31 491

divwu[o][.] Divide Word
Unsigned

XO 31 459

doz[o][.] Difference or Zero XO 31 264

dozi Difference or Zero
Immediate

D 09

eciwx External Control in
Word Indexed

X 31 310

ecowx External Control out
Word Indexed

X 31 438

eieio Enforce In-order
Execution of I/O

X 31 854

eqv[.] Equivalent X 31 284

exts[.] Extend Sign X 31 922

extsb[.] Extend Sign Byte X 31 954

extsh[.] Extend Sign Halfword XO 31 922

fa[.] Floating Add A 63 21

fabs[.] Floating Absolute
Value

X 63 264

fadd[.] Floating Add A 63 21

fadds[.] Floating Add Single A 59 21

fcir[.] Floating Convert to
Integer Word

X 63 14

fcirz[.] Floating Convert to
Integer Word with
Round to Zero

X 63 15

fcmpo Floating Compare
Ordered

X 63 32

fcmpu Floating Compare
Unordered

XL 63 0

fctiw[.] Floating Convert to
Integer Word

X 63 14

fctiwz[.] Floating Convert to
Integer Word with
Round to Zero

XL 63 15

fd[.] Floating Divide A 63 18

fdiv[.] Floating Divide A 63 18

fdivs[.] Floating Divide Single A 59 18

fm[.] Floating Multiply A 63 25

fma[.] Floating Multiply-Add A 63 29

fmadd[.] Floating Multiply-Add A 63 29

fmadds[.] Floating Multiply-Add
Single

A 59 29

fmr[.] Floating Move
Register

X 63 72

fms[.] Floating
Multiply-Subtract

A 63 28

Appendix G. PowerPC 601 RISC Microprocessor Instructions 561

fmsub[.] Floating
Multiply-Subtract

A 63 28

fmsubs[.] Floating
Multiply-Subtract
Single

A 59 28

fmul[.] Floating Multiply A 63 25

fmuls[.] Floating Multiply
Single

A 59 25

fnabs[.] Floating Negative
Absolute Value

X 63 136

fneg[.] Floating Negate X 63 40

fnma[.] Floating Negative
Multiply-Add

A 63 31

fnmadd[.] Floating Negative
Multiply-Add

A 63 31

fnmadds[.] Floating Negative
Multiply-Add Single

A 59 31

fnms[.] Floating Negative
Multiply-Subtract

A 63 30

fnmsub[.] Floating Negative
Multiply-Subtract

A 63 30

fnmsubs[.] Floating Negative
Multiply-Subtract
Single

A 59 30

frsp[.] Floating Round to
Single Precision

X 63 12

fs[.] Floating Subtract A 63 20

fsub[.] Floating Subtract A 63 20

fsubs[.] Floating Subtract
Single

A 59 20

icbi Instruction Cache
Block Invalidate

X 31 982

ics Instruction Cache
Synchronize

X 19 150

isync Instruction
Synchronize

X 19 150

l Load D 32

lbrx Load Byte-Reversed
Indexed

X 31 534

lbz Load Byte and Zero D 34

lbzu Load Byte and Zero
with Update

D 35

lbzux Load Byte and Zero
with Update Indexed

X 31 119

lbzx Load Byte and Zero
Indexed

X 31 87

lfd Load Floating-Point
Double

D 50

562 Assembler Language Reference

lfdu Load Floating-Point
Double with Update

D 51

lfdux Load Floating-Point
Double with Update
Indexed

X 31 631

lfdx Load Floating-Point
Double Indexed

X 31 599

lfs Load Floating-Point
Single

D 48

lfsu Load Floating-Point
Single with Update

D 49

lfsux Load Floating-Point
Single with Update
Indexed

X 31 567

lfsx Load Floating-Point
Single Indexed

X 31 535

lha Load Half Algebraic D 42

lhau Load Half Algebraic
with Update

D 43

lhaux Load Half Algebraic
with Update Indexed

X 31 375

lhax Load Half Algebraic
Indexed

X 31 343

lhbrx Load Half
Byte-Reversed
Indexed

X 31 790

lhz Load Half and Zero D 40

lhzu Load Half and Zero
with Update

D 41

lhzux Load Half and Zero
with Update Indexed

X 31 331

lhzx Load Half and Zero
Indexed

X 31 279

lm Load Multiple D 46

lmw Load Multiple Word D 46

lscbx Load String and
Compare Byte
Indexed

X 31 277

lsi Load String
Immediate

X 31 597

lswi Load String Word
Immediate

X 31 597

lswx Load String Word
Indexed

X 31 533

lsx Load String Indexed X 31 533

lu Load with Update D 33

lux Load with Update
Indexed

X 31 55

Appendix G. PowerPC 601 RISC Microprocessor Instructions 563

lwarx Load Word and
Reserve Indexed

X 31 20

lwbrx Load Word
Byte-Reversed
Indexed

X 31 534

lwz Load Word and Zero D 32

lwzu Load Word with Zero
Update

D 33

lwzux Load Word and Zero
with Update Indexed

X 31 55

lwzx Load Word and Zero
Indexed

X 31 23

lx Load Indexed X 31 23

maskg[.] Mask Generate X 31 29

maskir[.] Mask Insert from
Register

X 31 541

mcrf Move Condition
Register Field

XL 19 0

mcrfs Move to Condition
Register from FPSCR

X 63 64

mcrxr Move to Condition
Register from XER

X 31 512

mfcr Move from Condition
Register

X 31 19

mffs[.] Move from FPSCR X 63 583

mfmsr Move from Machine
State Register

X 31 83

mfspr Move from
Special-Purpose
Register

X 31 339

mfsr Move from Segment
Register

X 31 595

mfsrin Move from Segment
Register Indirect

X 31 659

mtcrf Move to Condition
Register Fields

XFX 31 144

mtfsb0[.] Move to FPSCR Bit 0 X 63 70

mtfsb1[.] Move to FPSCR Bit 1 X 63 38

mtfsf[.] Move to FPSCR
Fields

XFL 63 711

mtfsfi[.] Move to FPSCR Field
Immediate

X 63 134

mtmsr Move to Machine
State Register

X 31 146

mtspr Move to
Special-Purpose
Register

X 31 467

mtsr Move to Segment
Register

X 31 210

564 Assembler Language Reference

mtsri Move to Segment
Register Indirect

X 31 242

mtsrin Move to Segment
Register Indirect

X 31 242

mul[o][.] Multiply XO 31 107

mulhw[.] Multiply High Word XO 31 75

mulhwu[.] Multiply High Word
Unsigned

XO 31 11

muli Multiply Immediate D 07

mulli Multiply Low
Immediate

D 07

mullw[o][.] Multiply Low Word XO 31 235

muls[o][.] Multiply Short XO 31 235

nabs[o][.] Negative Absolute XO 31 488

nand[.] NAND X 31 476

neg[o][.] Negate XO 31 104

nor[.] NOR X 31 124

or[.] OR X 31 444

orc[.] OR with Complement X 31 412

ori OR Immediate D 24

oril OR Immediate Lower D 24

oris OR Immediate Shifted D 25

oriu OR Immediate Upper D 25

rfi Return from Interrupt X 19 50

rlimi[.] Rotate Left Immediate
then Mask Insert

M 20

rlinm[.] Rotate Left Immediate
then AND with Mask

M 21

rlmi[.] Rotate Left then Mask
Insert

M 22

rlnm[.] Rotate Left then AND
with Mask

M 23

rlwimi[.] Rotate Left Word
Immediate then Mask
Insert

M 20

rlwinm[.] Rotate Left Word
Immediate then AND
with Mask

M 21

rlwnm[.] Rotate Left Word then
AND with Mask

M 23

rrib[.] Rotate Right and
Insert Bit

X 31 537

sc System Call SC 17

sf[o][.] Subtract from XO 31 08

sfe[o][.] Subtract from
Extended

XO 31 136

Appendix G. PowerPC 601 RISC Microprocessor Instructions 565

sfi Subtract from
Immediate

D 08

sfme[o][.] Subtract from Minus
One Extended

XO 31 232

sfze[o][.] Subtract from Zero
Extended

XO 31 200

si Subtract Immediate D 12

si. Subtract Immediate
and Record

D 13

sl[.] Shift Left X 31 24

sle[.] Shift Left Extended X 31 153

sleq[.] Shift Left Extended
with MQ

X 31 217

sliq[.] Shift Left Immediate
with MQ

X 31 184

slliq[.] Shift Left Long
Immediate with MQ

X 31 248

sllq[.] Shift Left Long with
MQ

X 31 216

slq[.] Shift Left with MQ X 31 152

slw[.] Shift Left Word X 31 24

sr[.] Shift Right X 31 536

sra[.] Shift Right Algebraic X 31 792

srai[.] Shift Right Algebraic
Immediate

X 31 824

sraiq[.] Shift Right Algebraic
Immediate with MQ

X 31 952

sraq[.] Shift Right Algebraic
with MQ

X 31 920

sraw[.] Shift Right Algebraic
Word

X 31 792

srawi[.] Shift Right Algebraic
Word Immediate

X 31 824

sre[.] Shift Right Extended X 31 665

srea[.] Shift Right Extended
Algebraic

X 31 921

sreq[.] Shift Right Extended
with MQ

X 31 729

sriq[.] Shift Right Immediate
with MQ

X 31 696

srliq[.] Shift Right Long
Immediate with MQ

X 31 760

srlq[.] Shift Right Long with
MQ

X 31 728

srq[.] Shift RIght with MQ X 31 664

srw[.] Shift Right Word X 31 536

st Store D 36

566 Assembler Language Reference

stb Store Byte D 38

stbrx Store Byte-Reversed
Indexed

X 31 662

stbu Store Byte with
Update

D 39

stbux Store Byte with
Update Indexed

X 31 247

stbx Store Byte Indexed X 31 215

stfd Store Floating-Point
Double

D 54

stfdu Store Floating-Point
Double with Update

D 55

stfdux Store Floating-Point
Double with Update
Indexed

X 31 759

stfdx Store Floating-Point
Double Indexed

X 31 727

stfs Store Floating-Point
Single

D 52

stfsu Store Floating-Point
Single with Update

D 53

stfsux Store Floating-Point
Single with Update
Indexed

X 31 695

stfsx Store Floating-Point
Single Indexed

X 31 663

sth Store Half D 44

sthbrx Store Half
Byte-Reverse Indexed

X 31 918

sthu Store Half with
Update

D 45

sthux Store Half with
Update Indexed

X 31 439

sthx Store Half Indexed X 31 407

stm Store Multiple D 47

stmw Store Multiple Word D 47

stsi Store String
Immediate

X 31 725

stswi Store String Word
Immediate

X 31 725

stswx Store String Word
Indexed

X 31 661

stsx Store String Indexed X 31 661

stu Store with Update D 37

stux Store with Update
Indexed

X 31 183

stw Store D 36

Appendix G. PowerPC 601 RISC Microprocessor Instructions 567

stwbrx Store Word
Byte-Reversed
Indexed

X 31 662

stwcx. Store Word
Conditional Indexed

X 31 150

stwu Store Word with
Update

D 37

stwux Store Word with
Update Indexed

X 31 183

stwx Store Word Indexed X 31 151

stx Store Indexed X 31 151

subf[o][.] Subtract from XO 31 40

subfc[o][.] Subtract from
Carrying

XO 31 08

subfe[o][.] Subtract from
Extended

XO 31 136

subfic Subtract from
Immediate Carrying

D 08

subfme[o][.] Subtract from Minus
One Extended

XO 31 232

subfze[o][.] Subtract from Zero
Extended

XO 31 200

sync Synchronize X 31 598

t Trap X 31 04

ti Trap Immediate D 03

tlbie Translation
Look-aside Buffer
Invalidate Entry

X 31 306

tw Trap Word X 31 04

twi Trap Word Immediate D 03

xor[.] XOR X 31 316

xori XOR Immediate D 26

xoril XOR Immediate
Lower

D 26

xoris XOR Immediate Shift D 27

xoriu XOR Immediate
Upper

D 27

568 Assembler Language Reference

Appendix H. Value Definitions

Bits 0-5
These bits represent the opcode portion of the machine instruction.

Bits 6-30
These bits contain fields defined according to the values below. Note that many instructions also contain
extended opcodes, which occupy some portion of the bits in this range. Refer to specific instructions to
understand the format utilized.

Value Definition

/, //, /// Reserved/unused; nominally zero (0).

A Pseudonym for RA in some diagrams.

AA Absolute address bit.

v 0 - The immediate field represents an address relative to the current instruction address..

v 1 - The immediate field represents an absolute address.

B Pseudonym for RB in some diagrams.

BA Specifies source condition register bit for operation.

BB Specifies source condition register bit for operation.

BD Specifies a 14-bit value used as the branch displacement.

BF Specifies condition register field 0-7 which indicates the result of a compare.

BFA Specifies source condition register field for operation.

BI Specifies bit in condition register for condition comparison.

BO Specifies branch option field used in instruction.

BT Specifies target condition register bit where result of operation is stored.

D Specifies 16-bit two’s-complement integer sign extended to 32 bits.

DS Specifies a 14-bit field used as an immediate value for the calculation of an effective address (EA).

FL1 Specifies field for optional data passing the SVC routine.

FL2 Specifies field for optional data passing the SVC routine.

FLM Specifies field mask.

FRA Specifies source floating-point register for operation.

FRB Specifies source floating-point register for operation.

FRC Specifies source floating-point register for operation.

FRS Specifies source floating-point register of stored data.

FRT Specifies target floating-point register for operation.

FXM Specifies field mask.

I Specifies source immediate value for operation.

L Must be set to 0 for the 32-bit subset architecture.

LEV Specifies the execution address.

LI Immediate field specifying a 24-bit signed two’s complement integer that is concatenated on the
right with 0b00 and sign-extended to 64 bits (32 bits in 32-bit implementations).

LK If LK=1, the effective address of the instruction following the branch instruction is place into the link
register.

© Copyright IBM Corp. 1997, 2001 569

Value Definition

MB Specifies the begin value (bit number) of the mask for the operation.

ME Specifies the end value (bit number) of the mask for the operation.

NB Specifies the byte count for the operation.

OE Specifies that the overflow bits in the Fixed-Point Exception register are affected if the operation
results in overflow

RA Specifies the source general-purpose register for the operation.

RB Specifies the source general-purpose register for the operation.

RS Specifies the source general-purpose register for the operation.

RT Specifies the target general-purpose register where the operation is stored.

S Pseudonym for RS in some diagrams.

SA Documented in the svc instruction.

SH Specifies the (immediate) shift value for the operation.

SI Specifies the 16-bit signed integer for the operation.

SIMM 16-bit two’s-complement value which will be sign-extended for comparison.

SPR Specifies the source special purpose register for the operation.

SR Specifies the source segment register for the operation.

ST Specifies the target segment register for the operation.

TO Specifies TO bits that are ANDed with compare results.

U Specifies source immediate value for operation.

UI Specifies 16-bit unsigned integer for operation.

Bit 31
Bit 31 is the record bit.

Value Definition

0 Does not update the condition register.

1 Updates the condition register to reflect the result of the operation.

570 Assembler Language Reference

Appendix I. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1997, 2001 571

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

572 Assembler Language Reference

Index

Special Characters
.align pseudo-op 444
.bb pseudo-op 445
.bc pseudo-op 446
.bf pseudo-op 446
.bi pseudo-op 447
.bs pseudo-op 447
.byte pseudo-op 448
.comm pseudo-op 449
.csect pseudo-op 451
.double pseudo-op 453
.drop pseudo-op 454
.dsect pseudo-op 455
.eb pseudo-op 457
.ec pseudo-op 457
.ef pseudo-op 458
.ei pseudo-op 458
.es pseudo-op 459
.extern pseudo-op 459
.file pseudo-op 460
.float pseudo-op 461
.function pseudo-op 461
.globl pseudo-op 462
.hash pseudo-op 463
.lcomm pseudo-op 464
.lglobl pseudo-op 465
.line pseudo-op 466
.llong pseudo-op 467
.long pseudo-op 467
.machine pseudo-op 468
.org pseudo-op 471
.quad pseudo-op 471
.rename pseudo-op 473
.set pseudo-op 474
.short pseudo-op 475
.source pseudo-op 476
.space pseudo-op 477
.stabx pseudo-op 477
.string pseudo-op 478
.tbtag pseudo-op 479
.tc pseudo-op 480
.toc pseudo-op 482
.tocof pseudo-op 482
.using pseudo-op 483
.vbyte pseudo-op 487
.xline pseudo-op 488

Numerics
32-bit fixed-point rotate and shift instructions

extended mnemonics 98
64-bit fixed-point rotate and shift instructions

extended mnemonics 101

A
a (Add) instruction 116
abs (Absolute) instruction 113

accessing data through the TOC 78
add (Add) instruction 114
addc (Add Carrying) instruction 116
adde (Add Extended) instruction 118
addi (Add Immediate) instruction 120
addic. (Add Immediate Carrying and Record)

instruction 122
addic (Add Immediate Carrying) instruction 121
addis (Add Immediate Shifted) instruction 123
addme (Add to Minus One Extended) instruction 125
address location

making a translation look-aside buffer for
using tlbi (Translation Look-aside Buffer Invalidate

Entry) instruction 430
using tlbie (Translation Look-aside Buffer

Invalidate Entry) instruction 430
addresses

adding two general-purpose registers
using add (Add) instruction 114
using cax (Compute Address) instruction 114

calculating from an offset less than 32KB
using addi (Add Immediate) instruction 120
using cal (Compute Address Lower)

instruction 120
calculating from an offset more than 32KB

using addis (Add Immediate Shifted)
instruction 123

using cau (Compute Address Upper)
instruction 123

addressing
absolute 45
absolute immediate 45
explicit-based 45
implicit-based 46
location counter 47
pseudo-ops 442
relative immediate 45

addze (Add to Zero Extended) instruction 127
ae (Add Extended) instruction 118
ai. (Add Immediate and Record) instruction 122
ai (Add Immediate) instruction 121
alias

creating for an illegal name in syntax
using .rename pseudo-op 473

ame (Add to Minus One Extended) instruction 125
and (AND) instruction 128
andc (AND with Complement) instruction 130
andi. (AND Immediate) instruction 131
andil. (AND Immediate Lower) instruction 131
andis. (AND Immediate Shifted) instruction 132
andiu. (AND Immediate Upper) instruction 132
Appendix H: Value Definitions 569
architecture

multiple hardware support 2
POWER and PowerPC 11

as command 49
flags 50

© Copyright IBM Corp. 1997, 2001 573

assembler
interpreting a listing 54
new features 1
passes 53

assembling
program 49
with the cc command 52

aze (Add to Zero Extended) instruction 127

B
b (Branch) instruction 133
base address

specifying
using .using pseudo-op 483

base register
assigning a number for

using .using pseudo-op 483
stop using specified register as

using .drop pseudo-op 454
bbf[l][a] extended mnemonic 84
bbfc[l] extended mnemonic 84
bbfr[l] extended mnemonic 84
bbt[l][a] extended mnemonic 84
bbtc[l] extended mnemonic 84
bbtr[l] extended mnemonic 84
bc (Branch Conditional) instruction 134
bcc (Branch Conditional to Count Register)

instruction 136
bcctr (Branch Conditional to Count Register)

instruction 136
bclr (Branch Conditional Register) instruction 138
bcr (Branch Conditional Register) instruction 138
bctr[l] extended mnemonic 84, 85
bdn[l][a] extended mnemonic 84
bdnr[l] extended mnemonic 84
bdnz[l][a] extended mnemonic 84
bdnzf[l][a] extended mnemonic 85
bdnzflr[l] extended mnemonic 85
bdnzt[l][a] extended mnemonic 85
bdnztlr[l] extended mnemonic 85
bdz[l][a] extended mnemonic 84
bdzf[l][a] extended mnemonic 85
bdzflr[l] extended mnemonic 85
bdzlr[l] extended mnemonic 84
bdzr[l] extended mnemonic 84
bdzt[l][a] extended mnemonic 85
bdztlr[l] extended mnemonic 85
bf[l][a] extended mnemonic 84
bfctr[l] extended mnemonic 85
bflr[l] extended mnemonic 85
bl (Branch and Link) instruction 133
blr[l] extended mnemonic 85
br[l] extended mnemonic 84
branch instructions

extended mnemonics of 83
branch prediction

extended mnemonics for 87
bt[l][a] extended mnemonic 84
btctr[l] extended mnemonic 85
btlr[l] extended mnemonic 85

C
caches

using clcs (Cache Line Compute Size)
instruction 140

using clf (Cache Line Flush) instruction 141
using cli (Cache Line Invalidate) instruction 143
using dcbf (Data Cache Block Flush)

instruction 159
using dcbi (Data Cache Block Invalidate)

instruction 160
using dcbst (Data Cache Block Store)

instruction 161
using dcbt (Data Cache Block Touch)

instruction 163
using dcbtst (Data Cache Block Touch for Store)

instruction 164
using dcbz (Data Cache Block Set to Zero)

instruction 166
using dclst (Data Cache Line Store) instruction 167
using dclz (Data Cache Line Set to Zero)

instruction 166
using dcs (Data Cache Synchronize) instruction 426
using icbi (Instruction Cache Block Invalidate)

instruction 229
using ics (Instruction Cache Synchronize)

instruction 230
cal (Compute Address Lower) instruction 120
called routines 73
calling conventions

support for
pseudo-ops 443

calling routines 72
cau (Compute Address Upper) instruction 123
cax (Compute Address) instruction 114
cc command

assembling and linking with 52
character set 27
character values

assembling into consecutive bytes
using .string pseudo-op 478

clcs (Cache Line Compute Size) instruction 140
clf (Cache Line Flush) instruction 141
cli (Cache Line Invalidate) instruction 143
clrldi extended mnemonic 103
clrlsldi extended mnemonic 103
clrlwi extended mnemonic 100
clrrdi extended mnemonic 103
clrrwi extended mnemonic 100
clrslwi extended mnemonic 100
cmp (Compare) instruction 144
cmpi (Compare Immediate) instruction 146
cmpl (Compare Logical) instruction 147
cmpli (Compare Logical Immediate) instruction 148
cmplw extended mnemonic 91
cmplwi extended mnemonic 91
cmpw extended mnemonic 91
cmpwi extended mnemonic 91
cntlz (Count Leading Zeros) instruction 150
cntlzd (Count Leading Zeros Double Word)

Instruction 149
cntlzw (Count Leading Zeros Word) instruction 150

574 Assembler Language Reference

common blocks
defining

using .comm pseudo-op 449
identifying the beginning of

using .bc pseudo-op 446
identifying the end of

using .ec pseudo-op 457
Condition Register 155

copying bit 3 from the Fixed-Point Exception Register
into

using mcrxr (Move to Condition Register from
XER) instruction 283

copying general-purpose register contents into
using mtcrf (Move to Condition Register Fields)

instruction 292
copying Summary Overflow bit from the Fixed-Point

Exception Register into
using mcrxr (Move to Condition Register from

XER) instruction 283
copying the Carry bit from the Fixed-Point Exception

Register into
using mcrxr (Move to Condition Register from

XER) instruction 283
copying the Overflow bit from the Fixed-Point

Exception Register into
using mcrxr (Move to Condition Register from

XER) instruction 283
Condition Register bit 151

placing ANDing and the complement in a Condition
Register bit

using crandc (Condition Register AND with
Complement) instruction 152

placing complemented result of ANDing two
Condition Register bits in

using crnand (Condition Register NAND)
instruction 154

placing complemented result of XORing two
Condition Register bits in

using creqv (Condition Register Equivalent)
instruction 153

placing result of ORing and complement of Condition
Register bit in

using crorc (Condition Register OR with
Complement) instruction 157

placing result of ORing two Condition Register bits in
using cror (Condition Register OR)

instruction 156
placing result of XORing two Condition Register bits

in
using crxor (Condition Register XOR)

instruction 158
Condition Register field

copying the contents from one into another
using mcrf (Move Condition Register Field)

Instruction 281
condition register logical instructions

extended mnemonics 90
constants 33
control sections

giving a storage class to
using .csect pseudo-op 451

control sections (continued)
giving an alignment to

using .csect pseudo-op 451
grouping code into

using .csect pseudo-op 451
grouping data into

using .csect pseudo-op 451
naming

using .csect pseudo-op 451
Count Register

branching conditionally to address in
using bcc (Branch Conditional to Count Register)

instruction 136
using bcctr (Branch Conditional to Count Register)

instruction 136
CPU ID

determination 4
crand (Condition Register AND) instruction 151
crandc (Condition Register AND with Complement)

instruction 152
crclr extended mnemonic 90
creqv (Condition Register Equivalent) instruction 153
crmove extended mnemonic 90
crnand (Condition Register NAND) instruction 154
crnor (Condition Register) instruction 155
crnot extended mnemonic 90
cror (Condition Register OR) instruction 156
crorc (Condition Register OR with Complement)

instruction 157
cross-reference

interpreting a symbol 58
mnemonics 4

crset extended mnemonic 90
crxor (Condition Register XOR) instruction 158

D
data

accessing through the TOC 78
data alignment

pseudo-ops 442
data definition

pseudo-ops 442
dcbf (Data Cache Block Flush) instruction 159
dcbi (Data Cache Block Invalidate) instruction 160
dcbst (Data Cache Block Store) instruction 161
dcbt (Data Cache Block Touch) instruction 163
dcbtst (Data Cache Block Touch for Store)

instruction 164
dcbz (Data Cache Block Set to Zero) instruction 166
dclst (Data Cache Line Store) instruction 167
dclz (Data Cache Line Set to Zero) instruction 166
dcs (Data Cache Synchronize) instruction 426
debug traceback tags

defining
using .tbtag pseudo-op 479

debuggers
providing information to

using .stabx pseudo-op 477
symbol table entries

pseudo-ops 443

Index 575

defining
table of contents

using .tocof pseudo-op 482
div (Divide) instruction 168
divd (Divide Double Word) Instruction 170
divdu (Divide Double Word Unsigned) Instruction 171
divs (Divide Short) instruction 173
divw (Divide Word) instruction 175
divwu (Divide Word Unsigned) instruction 176
double floating-point constant

storing at the next fullword location
using .double pseudo-op 453

double-precision floating-point
adding 64-bit operand to result of multiplying two

operands
using fma (Floating Multiply-Add) instruction 202,

223
using fmadd (Floating Multiply-Add)

instruction 202, 223
adding two 64-bit operands

using fa (Floating Add) instruction 189
using fadd (Floating Add Double) instruction 189

dividing 64-bit operands
using fd (Floating Divide) instruction 200
using fdiv (Floating Divide Double)

instruction 200
multiplying two 64-bit operands

using fm (Floating Multiply) instruction 208
using fmul (Floating Multiply Double)

instruction 208
multiplying two 64-bit operands and adding to 64-bit

operand
using fnma (Floating Negative Multiply-Add)

instruction 213
using fnmadd (Floating Negative Multiply-Add

Double) instruction 213
multiplying two 64-bit operands and subtracting 64-bit

operand
using fnms (Floating Negative Multiply-Subtract)

instruction 215
using fnmsub (Floating Negative Multiply-Subtract

Double) instruction 215
rounding 64-bit operand to single precision

using frsp (Floating Round to Single Precision)
instruction 219

subtracting 64-bit operand from result of multiplying
two 64-bit operands

using fms (Floating Multiply-Subtract)
instruction 206

using fmsub (Floating Multiply-Subtract Double)
instruction 206

subtracting 64-bit operands
using fs (Floating Subtract) instruction 226
using fsub (Floating Subtract Double)

instruction 226
doz (Difference or Zero) instruction 178
dozi (Difference or Zero Immediate) instruction 180
dummy control sections

identifying the beginning of
using .dsect pseudo-op 455

dummy control sections (continued)
identifying the continuation of

using .dsect pseudo-op 455

E
eciwx (External Control In Word Indexed)

instruction 181
ecowx (External Control Out Word Indexed)

instruction 182
eieio (Enforce In-Order Execution of I/O)

instruction 183
epilogs 65

actions 66
eqv (Equivalent) instruction 185
error

messages 489
error conditions

detection of new 6
expressions 37

assembling into a TOC entry
using .tc pseudo-op 480

assembling into consecutive bytes 448
assembling into consecutive double-words

using .llong pseudo-op 467
assembling into consecutive fullwords

using .long pseudo-op 467
assembling into consecutive halfwords

using .short pseudo-op 475
assembling the value into consecutive bytes

using .vbyte pseudo-op 487
facilitating the use of local symbols in

using .tocof pseudo-op 482
setting a symbol equal in type and value to

using .set pseudo-op 474
extended menmonics

for branch prediction 87
extended mnemonics

of 32-bit fixed-point rotate and shift instructions 98
of 64-bit fixed-point rotate and shift instructions 101
of branch instructions 83
of condition register logical instructions 90
of fixed-point arithmetic instructions 91
of fixed-point compare instructions 91
of fixed-point load instructions 92
of fixed-point logical instructions 92
of fixed-point trap instructions 93
of moving from or to special-purpose registers 94

external symbol definitions
pseudo-ops 442

extldi extended mnemonic 103
extlwi extended mnemonic 100
extrdi extended mnemonic 103
extrwi extended mnemonic 100
exts (Extend Sign) instruction 187
extsb (Extend Sign Byte) instruction 186
extsh (Extend Sign Halfword) instruction 187
extsw (Extend Sign Word) Instruction 184

576 Assembler Language Reference

F
fa (Floating Add) instruction 189
fabs (Floating Absolute Value) instruction 188
fadd (Floating Add Double) instruction 189
fadds (Floating Add Single) instruction 189
fcfid (Floating Convert from Integer Double Word)

Instruction 192
fcir (Floating Convert Double to Integer with Round)

instruction 197
fcirz (Floating Convert Double to Integer with Round to

Zero) instruction 198
fcmpo (Floating Compare Ordered) instruction 193
fcmpu (Floating Compare Unordered) instruction 194
fctid (Floating Convert to Integer Double Word)

Instruction 195
fctidz (Floating Convert to Integer Double Word with

Round toward Zero) Instruction 196
fctiw (Floating Convert to Integer Word) instruction 197
fctiwz (Floating Convert to Integer Word with Round to

Zero) instruction 198
fd (Floating Divide) instruction 200
fdiv (Floating Divide Double) instruction 200
fdivs (Floating Divide Single) instruction 200
fixed-point arithmetic instructions

extended mnemonics 91
fixed-point compare instructions

extended mnemonics 91
fixed-point load instructions 92
fixed-point logical instructions

extended mnemonics 92
fixed-point trap instructions 93
floating-point constants

storing at the next fullword location
using .float pseudo-op 461

floating-point numbers 24
floating-point registers

calculating a square root
using fsqrt (Floating Square Root)

instruction 218, 221
comparing contents of two

using fcmpo (Floating Compare Ordered)
instruction 193

using fcmpu (Floating Compare Unordered)
instruction 194

converting 64-bit double-precision floating-point
operand

using fcir (Floating Convert to Integer with Round)
instruction 197

using fcirz (Floating Convert Double to Integer
with Round to Zero) instruction 198

using fctiw (Floating Convert to Integer Word)
instruction 197

using fctiwz (Floating Convert to Integer Word
with Round to Zero) instruction 198

converting contents to single precision
stfsx (Store Floating-Point Single Indexed)

instruction 397
using stfs (Store Floating-Point Single)

instruction 394
using stfsu (Store Floating-Point Single with

Update) instruction 395

floating-point registers (continued)
converting contents to single precision (continued)

using stfsux (Store Floating-Point Single with
Update Indexed) instruction 396

copying contents into Floating-Point Status and
Control Register

using mtfsf (Move to FPSCR Fields)
instruction 295

interpreting the contents of 24
loading converted double-precision floating-point

number into
using lfs (Load Floating-Point Single)

instruction 248
using lfsu (Load Floating-Point Single with

Update) instruction 249
using lfsux (Load Floating-Point Single with

Update Indexed) instruction 251
loading doubleword of data from memory into

using lfd (Load Floating-Point Double)
instruction 240

using lfdu (Load Floating-Point Double with
Update) instruction 241

using lfdux (Load Floating-Point Double with
Update Indexed) instruction 242

using lfdx (Load Floating-Point Double Indexed)
instruction 243

loading quadword of data from memory into
using lfq (Load Floating-Point Quad)

instruction 244
using lfqu (Load Floating-Point Quad with Update)

instruction 245
using lfqux (Load Floating-Point Quad with Update

Indexed) instruction 246
using lfqx (Load Floating-Point Quad Indexed)

instruction 247
moving contents of to another

using fmr (Floating Move Register)
instruction 205

negating absolute contents of
using fnabs (Floating Negative Absolute Value)

instruction 210
negating contents of

using fneg (Floating Negate) instruction 212
storing absolute value of contents into another

using fabs (Floating Absolute Value)
instruction 188

storing contents into doubleword storage
using stfd (Store Floating-Point Double)

instruction 385
using stfdu (Store Floating-Point Double with

Update) instruction 386
using stfdux (Store Floating-Point Double with

Update Indexed) instruction 387
using stfdx (Store Floating-Point Double Indexed)

instruction 388
storing contents into quadword storage

using stfq (Store Floating-Point Quad)
instruction 390

using stfqu (Store Floating-Point Quad with
Update) instruction 391

Index 577

floating-point registers (continued)
using stfqux (Store Floating-Point Quad with

Update Indexed) instruction 392
using stfqx (Store Floating-Point Quad Indexed)

instruction 393
storing contents into word storage

using stfiwx (Store Floating-Point as Integer word
Indexed) instruction 389

Floating-Point Status and Control Register
copying an immediate value into a field of

using mtfsfi (Move to FPSCR Field Immediate)
instruction 297

copying the floating-point register contents into
using mtfsf (Move to FPSCR Fields)

instruction 295
filling the upper 32 bits after loading

using mffs (Move from FPSCR) instruction 285
loading contents into a floating-point register

using mffs (Move from FPSCR) instruction 285
setting a specified bit to 1

using mtfsb1 (Move to FPSCR Bit 1)
instruction 294

setting a specified bit to zero
using mtfsb0 (Move to FPSCR Bit 0)

instruction 293
Floating-Point Status and Control Register field

copying the bits into the Condition Register
using mcrfs (Move to Condition Register from

FPSCR) instruction 282
fm (Floating Multiply) instruction 208
fma (Floating Multiply-Add) instruction 202
fmadd (Floating Multiply-Add Double) instruction 202
fmadds (Floating Multiply-Add Single) instruction 202
fmr (Floating Move Register) instruction 205
fms (Floating Multiply-Subtract) instruction 206
fmsub (Floating Multiply-Subtract Double)

instruction 206
fmsubs (Floating Multiply-Subtract Single)

instruction 206
fmul (Floating Multiply) instruction 208
fnabs (Floating Negative Absolute Value)

instruction 210
fneg (Floating Negate) instruction 212
fnma (Floating Negative Multiply-Add) instruction 213
fnmadd (Floating Negative Multiply-Add Double)

instruction 213
fnmadds (Floating Negative Multiply-Add Single)

instruction 213
fnms (Floating Negative Multiply-Subtract)

instruction 215
fnmsub (Floating Negative Multiply-Subtract Double)

instruction 215
fnmsubs (Floating Negative Multiply-Subtract Single)

instruction 215
fres (Floating Reciprocal Estimate Single)

instruction 218
frsp (Floating Round to Single Precision)

instruction 219
frsqrte (Floating Reciprocal Square Root Estimate)

instruction 221
fs (Floating Subtract) instruction 226

fsel (Floating-Point Select) instruction 223
fsqrt (Floating Square Root, Double-Precision)

Instruction 224
fsqrts (Floating Square Root Single) Instruction 225
fsub (Floating Subtract Double) instruction 226
fsubs (Floating Subtract Single) instruction 226
functions

identifying
using .function pseudo-op 461

identifying the beginning of
using .bf pseudo-op 446

identifying the end of
using .ef pseudo-op 458

G
general-purpose registers

adding complement from -1 with carry
using sfme (Subtract from Minus One Extended)

instruction 421
using subfme (Subtract from Minus One

Extended) instruction 421
adding contents to the value of the Carry bit

using adde (Add Extended) instruction 118
using ae (Add Extended) instruction 118

adding contents with 16-bit signed integer
using addic (Add Immediate Carrying)

instruction 121
using ai (Add Immediate) instruction 121

adding contents with Carry bit and -1
using addme (Add to Minus One Extended)

instruction 125
using ame (Add to Minus One Extended)

instruction 125
adding immediate value to contents of

using addic. (Add Immediate Carrying and
Record) instruction 122

using ai. (Add Immediate and Record)
instruction 122

adding the complement of the contents with the
Carry bit

using sfze (Subtract from Zero Extended)
instruction 423

using subfze (Subtract from Zero Extended)
instruction 423

adding the contents of
using addc (Add Carrying) instruction 116

adding zero and the value of the Carry bit to the
contents of

using addze (Add to Zero Extended)
instruction 127

using aze (Add to Zero Extended)
instruction 127

ANDing a generated mask with the rotated contents
of

using rlinm (Rotated Left Immediate Then AND
with Mask) instruction 336

using rlnm (Rotate Left Then AND with Mask)
instruction 338

using rlwinm (Rotated Left Word Immediate Then
AND with Mask) instruction 336

578 Assembler Language Reference

general-purpose registers (continued)
using rlwnm (Rotate Left Word Then AND with

Mask) instruction 338
ANDing an immediate value with

using andi. (AND Immediate) instruction 131
using andil. (AND Immediate Lower)

instruction 131
ANDing contents with the complement of another

using andc (AND with Complement)
instruction 130

ANDing logically the contents of
using and (AND) instruction 128

ANDing most significant 16 bits with a 16-bit
unsigned integer

using andis. (AND Immediate Shifted)
instruction 132

using andiu. (AND Immediate Upper)
instruction 132

changing the arithmetic sign of the contents of
using neg (Negate) instruction 313

comparing contents algebraically
using cmp (Compare) instruction 144

comparing contents logically
using cmpl (Compare Logical) instruction 147

comparing contents with unsigned integer logically
using cmpli (Compare Logical Immediate)

instruction 148
comparing contents with value algebraically

using cmpi (Compare Immediate) instruction 146
computing difference between contents and signed

16-bit integer
using dozi (Difference or Zero Immediate)

instruction 180
computing difference between contents of two

using doz (Difference or Zero) instruction 178
copying bit 0 of halfword into remaining 16 bits

using lha (Load Half Algebraic) instruction 253
copying bit 0 of halfword into remaining 16 bits of

using lhau (Load Half Algebraic with Update)
instruction 254

using lhaux (Load Half Algebraic with Update
Indexed) instruction 255

using lhax (Load Half Algebraic Indexed)
instruction 256

copying Condition Register contents into
using mfcr (Move from Condition Register)

instruction 284
copying contents into a special-purpose register

using mtspr (Move to Special-Purpose Register)
instruction 298

copying contents into the Condition Register
using mtcrf (Move to Condition Register Fields)

instruction 292
copying special-purpose register contents into

using mfspr (Move from Special-Purpose
Register) instruction 287

copying the Machine State Register contents into
using mfmsr (Move from Machine State Register)

instruction 286
dividing by contents of

using div (Divide) instruction 168

general-purpose registers (continued)
dividing by contents of (continued)

using divs (Divide Short) instruction 173
generating mask of ones and zeros for loading into

using maskg (Mask Generate) instruction 278
inserting contents of one into another under bit-mask

control
maskir (Mask Insert from Register)

instruction 280
loading consecutive bytes from memory into

consecutive
using lsi (Load String Immediate) instruction 266
using lswi (Load String Word Immediate)

instruction 266
using lswx (Load String Word Indexed)

instruction 267
using lsx (Load String Indexed) instruction 267

loading consecutive bytes into
using lscbx (Load String and Compare Byte

Indexed) instruction 264
loading consecutive words into several

using lm (Load Multiple) instruction 262
using lmw (Load Multiple Word) instruction 262

loading word of data from memory into
using lu (Load with Update) instruction 275
using lwzu (Load Word with Zero Update)

instruction 275
loading word of data into

using lux (Load with Update Indexed)
instruction 276

using lwzux (Load Word and Zero with Update
Indexed) instruction 276

using lwzx (Load Word and Zero Indexed)
instruction 277

using lx (Load Indexed) instruction 277
logically complementing the result of ANDing the

contents of two
using nand (NAND) instruction 312

logically complementing the result of ORing the
contents of two

using nor (NOR) instruction 315
logically ORing the content of two

using or (OR) instruction 316
logically ORing the contents with the complement of

the contents of
using orc (OR with Complement) instruction 318

merging a word of zeros with the MQ Register
contents

using srlq (Shift Right Long with MQ)
instruction 372

merging rotated contents with a word of 32 sign bits
using sra (Shift Right Algebraic) instruction 360
using srai (Shift Right Algebraic Immediate)

instruction 362
using sraiq (Shift Right Algebraic Immediate with

MQ) instruction 357
using sraq (Shift Right Algebraic with MQ)

instruction 358
using sraw (Shift Right Algebraic Word)

instruction 360

Index 579

general-purpose registers (continued)
using srawi (Shift Right Algebraic Word

Immediate) instruction 362
merging rotated contents with the MQ Register

contents
using sreq (Shift Right Extended with MQ)

instruction 367
using srliq (Shift Right Long Immediate with MQ)

instruction 370
using srlq (Shift Right Long with MQ)

instruction 372
merging the rotated contents results with the MQ

Register contents
using slliq (Shift Left Long Immediate with MQ)

instruction 349
merging with masked MQ Register contents

using sleq (Shift Left Extended with MQ)
instruction 346

multiplying a word
using mulhw (Multiply High Word) instruction 304
using mulhwu (Multiply High Word Unsigned)

instruction 305
multiplying the contents by a 16-bit signed integer

using muli (Multiply Immediate) instruction 308
using mulli (Multiply Low Immediate)

instruction 308
multiplying the contents of two

using mul (Multiply) instruction 300
multiplying the contents of two general-purpose

registers into
using mullw (Multiply Low Word) instruction 309
using muls (Multiply Short) instruction 309

negating the absolute value of
using nabs (Negative Absolute) instruction 311

ORing the lower 16 bits of the contents with a 16-bit
unsigned integer

using ori (OR Immediate) instruction 319
using oril (OR Immediate Lower) instruction 319

ORing the upper 16 bits of the contents with a 16-bit
unsigned integer

using oris (OR Immediate Shifted)
instruction 320

using oriu (OR Immediate Upper) instruction 320
placing a copy of rotated contents in the MQ

Register
using srea (Shift Right Extended Algebraic)

instruction 366
placing a copy of rotated data in the MQ register

using sle (Shift Left Extended) instruction 345
placing number of leading zeros in

using cntlz (Count Leading Zeros)
instruction 150

using cntlzw (Count Leading Zeros Word)
instruction 150

placing rotated contents in the MQ Register
using sliq (Shift Left Immediate with MQ)

instruction 347
using slq (Shift Left with MQ) instruction 352
using sriq (Shift Right Immediate with MQ)

instruction 369

general-purpose registers (continued)
placing the absolute value of the contents in

using abs (Absolute) instruction 113
placing the logical AND of the rotated contents in

using srq (Shift Right with MQ) instruction 373
placing the rotated contents in the MQ register

using srq (Shift Right with MQ) instruction 373
rotating contents left

using rlmi (Rotate Left Then Mask Insert)
instruction 332

using sl (Shift Left) instruction 353
using sle (Shift Left Extended) instruction 345
using sliq (Shift Left Immediate with MQ)

instruction 347
using slliq (Shift Left Long Immediate with MQ)

instruction 349
using sr (Shift Right) instruction 375
using sra (Shift Right Algebraic) instruction 360
using sraq (Shift Right Algebraic with MQ)

instruction 358
using srea (Shift Right Extended Algebraic)

instruction 366
using sreq (Shift Right Extended with MQ)

instruction 367
using sriq (Shift Right Immediate with MQ)

instruction 369
setting remaining 16 bits to 0 after loading

using lhz (Load Half and Zero) instruction 258
setting remaining 16 bits to zero after loading

using lhzu (Load Half and Zero with Update)
instruction 259

using lhzx (Load Half and Zero Indexed)
instruction 261

setting remaining 16 bits to zero in
using lhbrx (Load Half Byte-Reverse Indexed)

instruction 257
using lhzux (Load Half and Zero with Update

Indexed) instruction 260
storing a byte into memory with the address in

using stbu (Store Byte with Update)
instruction 377

storing a byte of data into memory
using stb (Store Byte) instruction 376
using stbux (Store Byte with Update Indexed)

instruction 378
using stbx (Store Byte Indexed) instruction 379

storing a byte-reversed word of data into memory
using stbrx (Store Byte Reverse Indexed)

instruction 408
using stwbrx (Store Word Byte Reverse Indexed)

instruction 408
storing a halfword of data into memory

using sth (Store Half) instruction 398
using sthu (Store Half with Update)

instruction 400
using sthux (Store Half with Update Indexed)

instruction 401
using sthx (Store Half Indexed) instruction 402

storing a word of data into memory
using st (Store) instruction 407
using stu (Store with Update) instruction 411

580 Assembler Language Reference

general-purpose registers (continued)
using stux (Store with Update Indexed)

instruction 412
using stw (Store Word) instruction 407
using stwcx (Store Word Conditional Indexed)

instruction 409
using stwu (Store Word with Update)

instruction 411
using stwux (Store Word with Update Indexed)

instruction 412
using stwx (Store Word Indexed) instruction 413
using stx (Store Indexed) instruction 413

storing consecutive bytes from consecutive registers
into memory

using stsi (Store String Immediate)
instruction 404

using stswi (Store String Word Immediate)
instruction 404

using stswx (Store String Word Indexed)
instruction 405

using stsx (Store String Indexed) instruction 405
storing contents of consecutive registers into memory

using stm (Store Multiple) instruction 403
using stmw (Store Multiple Word) instruction 403

storing halfword of data with 2 bytes reversed into
memory

using sthbrx (Store Half Byte-Reverse Indexed)
instruction 399

subtracting contents of one from another
using sf (Subtract From) instruction 416
using subfc (Subtract from Carrying)

instruction 416
subtracting from

using subf (Subtract From) instruction 414
subtracting the contents from a 16-bit signed integer

using sfi (Subtract from Immediate)
instruction 420

using subfic (Subtract from Immediate Carrying)
instruction 420

subtracting the contents from the sum of
using sfe (Subtract from Extended) 418
using subfe (Subtract from Extended) 418

subtracting the value of a signed integer from the
contents of

using si. (Subtract Immediate and Record)
instruction 343

using si (Subtract Immediate) instruction 342
translate effective address into real address and

store in
using rac (Real Address Compute)

instruction 321
using a (Add) instruction 116
using divw (Divide Word) instruction 175
using divwu (Divide Word Unsigned) instruction 176
using extsb (Extend Sign Byte) instruction 186
using lfq (Load Floating-Point Quad) instruction 244
using lfqu (Load Floating-Point Quad with Update)

instruction 245
using lfqux (Load Floating-Point Quad with Update

Indexed) instruction 246

general-purpose registers (continued)
using lfqx (Load Floating-Point Quad Indexed)

instruction 247
using lwarx (Load Word and Reserve Indexed)

instruction 269
using rlimi (Rotate Left Immediate Then Mask Insert)

instruction 334
using rlnm (Rotate Left Then AND with Mask)

instruction 338
using rlwimi (Rotate Left Word Immediate Then Mask

Insert) instruction 334
using rlwnm (Rotate Left Word Then AND with Mask)

instruction 338
using rrib (Rotate Right and Insert Bit)

instruction 340
using sllq (Shift Left Long with MQ) instruction 350
using slq (Shift Left with MQ) instruction 352
using slw (Shift Left Word) instruction 353
using srai (Shift Right Algebraic Immediate)

instruction 362
using sraiq (Shift Right Algebraic Immediate with

MQ) instruction 357
using sraw (Shift Right Algebraic Word)

instruction 360
using srawi (Shift Right Algebraic Word Immediate)

instruction 362
using sre (Shift Right Extended) instruction 364
using srliq (Shift Right Long Immediate with MQ)

instruction 370
using srlq (Shift Right Long with MQ)

instruction 372
using srq (Shift Right with MQ) instruction 373
using srw (Shift Right Word) instruction 375
using stfq (Store Floating-Point Quad)

instruction 390
using stfqu (Store Floating-Point Quad with Update)

instruction 391
using stfqux (Store Floating-Point Quad with Update

Indexed) instruction 392
using stfqx (Store Floating-Point Quad Indexed)

instruction 393
XORing contents of

using eqv (Equivalent) instruction 185
XORing the contents and 16-bit unsigned integer

using xori (XOR Immediate) instruction 438
using xoril (XOR Immediate Lower)

instruction 438
XORing the contents of two

using xor (XOR) instruction 437
XORing the upper 16 bits with a 16-bit unsigned

integer
using xoris (XOR Immediate Shift)

instruction 439
using xoriu (XOR Immediate Upper)

instruction 439

H
hash values

associating with external symbol
using .hash pseudo-op 463

Index 581

host machine independence 4

I
icbi (Instruction Cache Block Invalidate) instruction 229
ics (Instruction Cache Synchronize) instruction 230
implementation

multiple platform support 2
included files

identifying the beginning of
using .bi pseudo-op 447

identifying the end of
using .ei pseudo-op 458

inner blocks
identifying the beginning of

using .bb pseudo-op 445
identifying the end of

using .eb pseudo-op 457
inslwi extended mnemonic 100
insrdi extended mnemonic 103
insrwi extended mnemonic 100
instruction fields 16
instruction forms 13
instructions

branch 20
common to POWER and PowerPC 537
condition register 20
fixed-point

address computation 22
arithmetic 22
compare 22
load and store 21
load and store with update 21
logical 23
move to or from special-purpose registers 23
rotate and shift 23
string 21
trap 22

floating-point
arithmetic 25
compare 25
conversion 26
load and store 25
move 25
multiply-add 25
status and control register 26

PowerPC 551
PowerPC 601 RISC Microprocessor 559
sorted by mnemonic 509
sorted by primary and extended op code 523
system call 20

intermodule calls using the TOC 81
interrupts

generating when a condition is true
using t (Trap) instruction 435
using ti (Trap Immediate) instruction 436
using tw (Trap Word) instruction 435
using twi (Trap Word Immediate) instruction 436

supervisor call
generating an interrupt 425

system call
generating and interrupt 341

isync (Instruction Synchronize) instruction 230

L
l (Load) instruction 274
la extended mnemonic 92
lbrx (Load Byte-Reverse Indexed) instruction 273
lbz (Load Byte and Zero) instruction 231
lbzux (Load Byte and Zero with Update Indexed)

instruction 233
lbzx (Load Byte and Zero Indexed) instruction 234
ld (Load Double Word) instruction 235
ldarx (Store Double Word Reserve Indexed)

Instruction 236
ldu (Store Double Word with Update) Instruction 237
ldux (Store Double Word with Update Indexed)

Instruction 238
ldx (Store Double Word Indexed) Instruction 239
leading zeros

placing in a general-purpose register
using cntlz (Count Leading Zeros)

instruction 150
using cntlzw (Count Leading Zeros Word)

instruction 150
lfd (Load Floating-Point Double) instruction 240
lfdu (Load Floating-Point Double with Update)

instruction 241
lfdux (Load Floating-Point Double with Update Indexed)

instruction 242
lfdx (Load Floating-Point Double Indexed)

instruction 243
lfq (Load Floating-Point Quad) instruction 244
lfqu (Load Floating-Point Quad with Update)

instruction 245
lfqux (Load Floating-Point Quad with Update Indexed)

instruction 246
lfqx (Load Floating-Point Quad Indexed)

instruction 247
lfs (Loading Floating-Point Single) instruction 248
lfsu (Load Floating-Point Single with Update)

instruction 249
lfsux (Load Floating-Point Single with Update Indexed)

instruction 251
lfsx (Load Floating-Point Single Indexed)

instruction 252
lha (Load Half Algebraic) instruction 253
lhau (Load Half Algebraic with Update) instruction 254
lhaux (Load Half Algebraic with Update Indexed)

instruction 255
lhax (Load Half Algebraic Indexed) instruction 256
lhbrx (Load Half Byte-Reverse Indexed) instruction 257
lhz (Load Half and Zero) instruction 258
lhzu (Load Half and Zero with Update) instruction 259
lhzux (Load Half and Zero with Update Indexed)

instruction 260
lhzx (Load Half and Zero Indexed) instruction 261
li extended mnemonic 92
lil extended mnemonic 92
line format 28
line numbers

identifying
using .line pseudo-op 466

582 Assembler Language Reference

lines
representing the number of

using .xline pseudo-op 488
Link Register

branching conditionally to address in
using bclr (Branch Conditional Register)

instruction 138
using bcr (Branch Conditional Register)

instruction 138
linkage

subroutine linkage convention 59
linker

making a symbol globally visible to the
using .globl pseudo-op 462

linking 49
with the cc command 52

lis extended mnemonic 92
listing

interpreting an assembler 54
liu extended mnemonic 92
lm (Load Multiple) instruction 262
lmw (Load Multiple Word) instruction 262
local common section

defining a
using .lcomm pseudo-op 464

local symbol
facilitating use in expressions

using .tocof pseudo-op 482
location counter 47

advancing until a specified boundary is reached
using .align pseudo-op 444

setting the value of the current
using .org pseudo-op 471

logical processing
model 11

lscbx (Load String and Compare Byte Indexed)
instruction 264

lsi (Load String Immediate) instruction 266
lswi (Load String Word Immediate) instruction 266
lswx (Load String Word Indexed) instruction 267
lsx (Load String Indexed) instruction 267
lu (Load with Update) instruction 275
lux (Load with Update Indexed) instruction 276
lwa (Load Word Algebraic) Instruction 269
lwarx (Load Word and Reserve Indexed)

instruction 269
lwaux (Load Word Algebraic with Update Indexed)

Instruction 271
lwax (Load Word Algebraic Indexed) Instruction 272
lwbrx (Load Word Byte-Reverse Indexed)

instruction 273
lwz (Load Word and Zero) instruction 274
lwzu (Load Word with Zero Update) instruction 275
lwzux (Load Word and Zero with Update Indexed)

instruction 276
lwzx (Load Word and Zero Indexed) instruction 277
lx (Load Indexed) instruction 277

M
Machine State Register

after a supervisor call and reinitialize
using rfsvc (Return from SVC) instruction 324

Machine State Register (continued)
continue processing and reinitialize

using rfi (Return from Interrupt) instruction 322
copying the contents into a general-purpose register

using mfmsr (Move from Machine State Register)
instruction 286

main memory
ensuring storage access in

using eieio (Enforce In-Order Execution of I/O)
instruction 183

maskg (Mask Generate) instruction 278
maskir (Mask Insert from Register) instruction 280
masks

generating instance of ones and zeros
using maskg (Mask Generate) instruction 278

mcrf (Move Condition Register Field) instruction 281
mcrfs (Move to Condition Register from FPSCR)

instruction 282
mcrxr (Move to Condition Register from XER)

instruction 283
memory

loading a byte of data from
using lbzu (Load Byte and Zero with Update)

instruction 232
loading byte of data from

using lbz (Load Byte and Zero) instruction 231
using lbzux (Load Byte and Zero with Update

Indexed) instruction 233
loading byte of data into

using lbzx (Load Byte and Zero Indexed)
instruction 234

loading byte-reversed halfword of data from
using lhbrx (Load Half Byte-Reverse Indexed)

instruction 257
loading byte-reversed word of data from

using lbrx (Load Byte-Reverse Indexed)
instruction 273

using lwbrx (Load Word Byte-Reverse Indexed)
instruction 273

loading consecutive bytes from
using lsi (Load String Immediate) instruction 266
using lswi (Load String Word Immediate)

instruction 266
using lswx (Load String Word Indexed)

instruction 267
using lsx (Load String Indexed) instruction 267

loading doubleword of data from
using lfd (Load Floating-Point Double)

instruction 240
using lfdu (Load Floating-Point Double with

Update) instruction 241
using lfdux (Load Floating-Point Double with

Update Indexed) instruction 242
using lfdx (Load Floating-Point Double Indexed)

instruction 243
loading halfword of data from

using lha (Load Half Algebraic) instruction 253
using lhau (Load Half Algebraic with Update)

instruction 254
using lhaux (Load Half Algebraic with Update

Indexed) instruction 255

Index 583

memory (continued)
using lhax (Load Half Algebraic Indexed)

instruction 256
using lhz (Load Half and Zero) instruction 258
using lhzu (Load Half and Zero with Update)

instruction 259
using lhzux (Load Half and Zero with Update

Indexed) instruction 260
using lhzx (Load Half and Zero Indexed)

instruction 261
loading quadword of data from

using lfq (Load Floating-Point Quad)
instruction 244

using lfqu (Load Floating-Point Quad with Update)
instruction 245

using lfqux (Load Floating-Point Quad with Update
Indexed) instruction 246

using lfqx (Load Floating-Point Quad Indexed)
instruction 247

loading single-precision floating-point number from
using lfsu (Load Floating-Point Single with

Update) instruction 249
using lfsx (Load Floating-Point Single Indexed)

instruction 252
loading single-precision floating-point number into

using lfs (Load Floating-Point Single)
instruction 248

using lfsux (Load Floating-Point Single with
Update Indexed) instruction 251

loading word of data from 274
using lu (Load with Update) instruction 275
using lux (Load with Update Indexed)

instruction 276
using lwzu (Load Word with Zero Update)

instruction 275
using lwzux (Load Word and Zero with Update

Indexed) instruction 276
using lwzx (Load Word and Zero Indexed)

instruction 277
using lx (Load Indexed) instruction 277

setting remaining 24 bits after loading into
using lbzx (Load Byte and Zero Indexed)

instruction 234
setting remaining 24 bits to 0 after loading from

using lbz (Load Byte and Zero) instruction 231
using lbzux (Load Byte and Zero with Update

Indexed) instruction 233
setting remaining 24 bits to 0 after loading into

using lbzu (Load Byte and Zero with Update)
instruction 232

storing a quadword of data into
using stfq (Store Floating-Point Quad)

instruction 390
using stfqu (Store Floating-Point Quad with

Update) instruction 391
using stfqux (Store Floating-Point Quad with

Update Indexed) instruction 392
using stfqx (Store Floating-Point Quad Indexed)

instruction 393
using dcbf (Data Cache Block Flush)

instruction 159

messages
error 489
warning 489

mfcr (Move from Condition Register) instruction 284
mfctr extended mnemonic 97
mfdar extended mnemonic 97
mfdec extended mnemonic 97
mfdsisr extended mnemonic 97
mfear extended mnemonic 97
mffs (Move from FPSCR) instruction 285
mflr extended mnemonic 97
mfmq extended mnemonic 97
mfmsr (Move from Machine State Register)

instruction 286
mfpvr extended mnemonic 97
mfrtcl extended mnemonic 97
mfrtcu extended mnemonic 97
mfsdr1 extended mnemonic 97
mfspr (Move from Special-Purpose Register)

instruction 287
mfsprg extended mnemonic 97
mfsr (Move from Segment Register) instruction 289
mfsri (Move from Segment Register Indirect)

instruction 290
mfsrin (Move from Segment Register Indirect)

instruction 291
mfsrr0 extended mnemonic 97
mfsrr1 extended mnemonic 97
mfxer extended mnemonic 97
milicode routines 75
mnemonic

instructions sorted by 509
mnemonics cross-reference 4
moving from or to special-purpose registers

extended mnemonics 94
mr[.] extended mnemonic 92
mr (Move Register) instruction 316
mtcrf (Move to Condition Register Fields)

instruction 292
mtctr extended mnemonic 98
mtdar extended mnemonic 98
mtdec extended mnemonic 98
mtdsisr extended mnemonic 98
mtear extended mnemonic 98
mtfsb0 (Move to FPSCR Bit 0) instruction 293
mtfsb1 (Move to FPSCR Bit 1) instruction 294
mtfsf (Move to FPSCR Fields) instruction 295
mtfsfi (Move to FPSCR Field Immediate)

instruction 297
mtlr extended mnemonic 98
mtmq extended mnemonic 98
mtrtcl extended mnemonic 98
mtrtcu extended mnemonic 98
mtsdr1 extended mnemonic 98
mtspr (Move to Special-Purpose Register)

instruction 298
mtsprg extended mnemonic 98
mtsrr0 extended mnemonic 98
mtsrr1 extended mnemonic 98
mtxer extended mnemonic 98
mul (Multiply) instruction 300

584 Assembler Language Reference

mulhd (Multiply High Double Word) Instruction 302
mulhdu (Multiply High Double Word Unsigned)

Instruction 303
mulhw (Multiply High Word) instruction 304
mulhwu (Multiply High Word Unsigned) instruction 305
muli (Multiply Immediate) instruction 308
mulld (Multiply Low Double Word) Instruction 307
mulldo (Multiply Low Double Word) Instruction 307
mulli (Multiply Low Immediate) instruction 308
mullw (Multiply Low Word) instruction 309
muls (Multiply Short) instruction 309

N
nabs (Negative Absolute) instruction 311
name

creating a synonym or alias for an illegal name
using .rename pseudo-op 473

nand (NAND) instruction 312
neg (Negate) instruction 313
nop extended mnemonic 92
nor (NOR) instruction 315
not[.] extended mnemonic 92
notational conventions

pseudo-ops 444

O
op code

instructions sorted by primary and extended 523
operators 36
or (OR) instruction 316
orc (OR with Complement) instruction 318
ori (OR Immediate) instruction 319
oril (OR Immediate Lower) instruction 319
oris (OR Immediate Shifted) instruction 320
oriu (OR Immediate Upper) instruction 320
output file

skipping a specified number of bytes in
using .space pseudo-op 477

P
passes

assembler 53
POWER and POWER2

instructions 541
POWER and PowerPC

architecture 11
common instructions 537

POWER and PowerPC instructions
extended mnemonics changes 108
functional differences for 105
new PowerPC instructions 111
with same op code 106

PowerPC
instructions 551

PowerPC 601 RISC Microprocessor
instructions 559

PowerPC instructions
new 111

process
run-time process stack 62

program
running a 82

programs
generating interrupt

using t (Trap) instruction 435
using ti (Trap Immediate) instruction 436
using tw (Trap Word) instruction 435
using twi (Trap Word Immediate) instruction 436

prologs 65
actions 66

pseudo-ops 441, 442, 444, 445, 446, 447, 448, 449,
451, 453, 454, 455, 457, 458, 459, 460, 461, 462,
463, 464, 465, 466, 467, 468, 471, 472, 473, 474,
475, 476, 477, 478, 479, 480, 482, 483, 487, 488

addressing 442
calling conventions

support for 443
data alignment 442
functional groups 441
miscellaneous 443
support for calling conventions 443
symbol table entries for debuggers 443

Q
quad floating-point constant

storing at the next fullword location
using .quad pseudo-op 471

R
rac (Real Address Compute) instruction 321
real address

translating effective address to
using eciwx (External Control In Word Indexed)

instruction 181
using ecowx (External Control Out Word Indexed)

instruction 182
reciprocal, floating single estimate 218
reciprocal, floating square root estimate 221
ref pseudo-op 472
registers

special-purpose
changes and field handling 9
extended mnemonics 94

usage and conventions 60
reserved words 27
rfi (Return from Interrupt) instruction 322
rfid (Return from Interrupt Double Word)

Instruction 323
rfsvc (Return from SVC) instruction 324
rldcl (Rotate Left Double Word then Clear Left)

Instruction 325
rldcr (Rotate Left Double Word then Clear Right)

Instruction 327
rldic (Rotate Left Double Word Immediate then Clear)

Instruction 328
rldicl (Rotate Left Double Word Immediate then Clear

Left) Instruction 326, 329

Index 585

rldicr (Rotate Left Double Word Immediate then Clear
Right) Instruction 330

rldimi (Rotate Left Double Word Immediate then Mask
Insert) Instruction 331

rlimi (Rotate Left Immediate Then Mask Insert)
instruction 334

rlinm (Rotate Left Immediate Then AND with Mask)
instruction 336

rlmi (Rotate Left Then Mask Insert) instruction 332
rlnm (Rotate Left Then AND with Mask) instruction 338
rlwimi (Rotate Left Word Immediate Then Mask Insert)

instruction 334
rlwinm (Rotate Left Word Immediate Then AND with

Mask) instruction 336
rlwnm (Rotate Left Word Then AND with Mask)

instruction 338
rotld extended mnemonic 103
rotldi extended mnemonic 103
rotlw extended mnemonic 100
rotlwi extended mnemonic 100
rotrdi extended mnemonic 103
rotrwi extended mnemonic 100
rrib (Rotate Right and Insert Bit) instruction 340
running a program 82

S
sc (System Call) instruction 341
section definition

pseudo-ops 442
Segment Register

copying to general-purpose registers
using mfsr (Move from Segment Register)

instruction 289
using mfsri (Move from Segment Register Indirect)

instruction 290
using mfsrin (Move from Segment Register

Indirect) instruction 291
selecting operand with fsel instruction 223
sf (Subtract from) instruction 416
sfe (Subtract from Extended) instruction 418
sfi (Subtract from Immediate) instruction 420
sfme (Subtract from Minus One Extended)

instruction 421
sfze (Subtract from Zero Extended) instruction 423
si[.] extended mnemonic 91
si. (Subtract Immediate and Record) instruction 343
si (Subtract Immediate) instruction 342
signed integers

extending 16-bit to 32 bits
using exts (Extend Sign) instruction 187
using extsh (Extend Sign Halfword)

instruction 187
single-precision floating-point

adding 32-bit operand to result of multiplying two
operands

using fmadds (Floating Multiply-Add Single)
instruction 202, 223

adding two 32-bit operands
using fadds (Floating Add Single) instruction 189

single-precision floating-point (continued)
dividing 32-bit operands

using fdivs (Floating Divide Single)
instruction 200

multiplying two 32-bit operands
using fmuls (Floating Multiply Single)

instruction 208
multiplying two 32-bit operands and adding to 32-bit

operand
using fnmadds (Floating Negative Multiply-Add

Single) instruction 213
multiplying two 32-bit operands and subtracting 32-bit

operand
using fnmsubs (Floating Negative

Multiply-Subtract Single) instruction 215
subtracting 32-bit operand from result of multiplying

two 32-bit operands
using fmsubs (Floating Multiply-Subtract Single)

instruction 206
subtracting 32-bit operands

using fsubs (Floating Subtract Single)
instruction 226

sl (Shift Left) instruction 353
sld (Shift Left Double Word) Instruction 344
sldi extended mnemonic 103
sle (Shift Left Extended) instruction 345
sleq (Shift Left Extended with MQ) instruction 346
sliq (Shift Left Immediate with MQ) instruction 347
slliq (Shift Left Long Immediate with MQ)

instruction 349
sllq (Shift Left Long with MQ) instruction 350
slq (Shift Left with MQ) instruction 352
slw (Shift Left Word) instruction 353
slwi extended mnemonic 100
source files

identifying file names
using .file pseudo-op 460

source language type 5
identifying

using .source pseudo-op 476
source module

identifying a symbol defined in another
using .extern pseudo-op 459

special-purpose registers
changes and field handling 9
copying general-purpose register contents into

using mtspr (Move to Special-Purpose Register)
instruction 298

copying the contents into a general-purpose register
using mfspr (Move from Special-Purpose

Register) instruction 287
extended mnemonics 94

split-field notation 16
square root, reciprocal floating estimate 221
sr (Shift Right) instruction 375
sra (Shift Right Algebraic) instruction 360
srad (Shift Right Algebraic Double Word)

Instruction 355
sradi (Shift Right Algebraic Double Word Immediate)

Instruction 356
srai (Shift Right Algebraic Immediate) instruction 362

586 Assembler Language Reference

sraiq (Shift Right Algebraic Immediate with MQ)
instruction 357

sraq (Shift Right Algebraic with MQ) instruction 358
sraw (Shift Right Algebraic Word) instruction 360
srawi (Shift Right Algebraic Word Immediate)

instruction 362
srd (Shift Right Double Word) Instruction 363
srdi extended mnemonic 103
sre (Shift Right Extended) instruction 364
srea (Shift Right Extended Algebraic) instruction 366
sreq (Shift Right Extended with MQ) instruction 367
sriq (Shift Right Immediate with MQ) instruction 369
srliq (Shift Right Long Immediate with MQ)

instruction 370
srlq (Shift Right Long with MQ) instruction 372
srq (Shift Right with MQ) instruction 373
srw (Shift Right Word) instruction 375
srwi extended mnemonic 100
st (Store) instruction 407
stack

run-time process 62
stack-related system standards 65

statements 28
static blocks

identifying the beginning of
using .bs pseudo-op 447

identifying the end of
using .es pseudo-op 459

static name
keeping information in the symbol table

using .lglobl pseudo-op 465
stb (Store Byte) instruction 376
stbrx (Store Byte-Reverse Indexed) instruction 408
stbu (Store Byte with Update) instruction 377
stbux (Store Byte with Update Indexed) instruction 378
stbx (Store Byte Indexed) instruction 379
std (Store Double Word) Instruction 380
stdcx. (Store Double Word Conditional Indexed)

Instruction 381
stdu (Store Double Word with Update) Instruction 382
stdux (Store Double Word with Update Indexed)

Instruction 383
stdx (Store Double Word Indexed) Instruction 384
stfd (Store Floating-Point Double) instruction 385
stfdu (Store Floating-Point Double with Update)

instruction 386
stfdux (Store Floating-Point Double with Update

Indexed) instruction 387
stfdx (Store Floating-Point Double Indexed)

instruction 388
stfiwx (Store Floating-Point as Integer Word Indexed)

instruction 389
stfq (Store Floating-Point Quad) instruction 390
stfqu (Store Floating-Point Quad with Update)

instruction 391
stfqux (Store Floating-Point Quad with Update Indexed)

instruction 392
stfqx (Store Floating-Point Quad Indexed)

instruction 393
stfs (Store Floating-Point Single) instruction 394

stfsu (Store Floating-Point Single with Update)
instruction 395

stfsux (Store Floating-Point Single with Update Indexed)
instruction 396

stfsx (Store Floating-Point Single Indexed)
instruction 397

sth (Store Half) instruction 398
sthbrx (Store Half Byte-Reverse Indexed)

instruction 399
sthu (Store Half with Update) instruction 400
sthux (Store Half with Update Indexed) instruction 401
sthx (Store Half Indexed) instruction 402
stm (Store Multiple) instruction 403
stmw (Store Multiple Word) instruction 403
storage

synchronize
using sync (Synchronize) instruction 426

storage definition
pseudo-ops 442

storage mapping classes 451
stsi (Store String Immediate) instruction 404
stswi (Store String Word Immediate) instruction 404
stswx (Store String Word Indexed) instruction 405
stsx (Store String Indexed) instruction 405
stu (Store with Update) instruction 411
stux (Store with Update Indexed) instruction 412
stw (Store Word) instruction 407
stwbrx (Store Word Byte-Reverse Indexed)

instruction 408
stwcx. (Store Word Conditional Indexed)

instruction 409
stwu (Store Word with Update) instruction 411
stwux (Store Word with Update Indexed)

instruction 412
stwx (Store Word Indexed) instruction 413
stx (Store Indexed) instruction 413
sub[o][.] extended mnemonic 91
subc[o][.] extended mnemonic 91
subf (Subtract From) instruction 414
subfc (Subtract from Carrying) instruction 416
subfe (Subtract from Extended) instruction 418
subfic (Subtract from Immediate Carrying)

instruction 420
subfme (Subtract from Minus One Extended)

instruction 421
subfze (Subtract from Zero Extended) instruction 423
subi extended mnemonic 91
subic[.] extended mnemonic 91
subis extended mnemonic 91
subroutine

linkage convention 59
svc (Supervisor Call) instruction 425
symbol table

entries for debuggers
pseudo-ops 443

keeping information of a static name in the
using .lglobl pseudo-op 465

symbols
associating a hash value with external

using .hash pseudo-op 463
constructing 30

Index 587

symbols (continued)
interpreting a cross-reference 58
making globally visible to linker

using .globl pseudo-op 462
setting equal to an expression in type and value

using .set pseudo-op 474
sync (Synchronize) instruction 426
synchronize

using isync (Instruction Synchronize) instruction 230
syntax and semantics

character set 27
comments 30
constants 33
constructing symbols 30
expressions 37
instruction statements 28
labels 29
line format 28
mnemonics 29
null statements 28
operands 30
operators 36
pseudo-operation statements 28
reserved words 27
separator character 29
statements 28

T
t (Trap) instruction 435
table of contents

defining
using .toc pseudo-op 482

tags
traceback 73

target addresses
branching conditionally to

using bc (Branch Conditional) instruction 134
branching to

using b (Branch) instruction 133
target environment

defining
using .machine pseudo-op 468

indicator flag 4
td (Trap Double Word) Instruction 428
tdi (Trap Double Word Immediate) Instruction 429
ti (Trap Immediate) instruction 436
tlbi (Translation Look-aside Buffer) instruction 430
tlbie (Translation Look-aside Buffer) instruction 430
tlbld (Load Data TLB Entry) instruction 431
tlbli (Load Instruction TLB Entry) instruction 433
tlbsync (Translation Look-Aside Buffer Synchronize)

Instruction 434
TOC

accessing data through 78
intermodule calls using 81
programming the 77
understanding the 77

traceback tags 73
tw (Trap Word) instruction 435
twi (Trap Word Immediate) instruction 436

U
user register set

POWER family 12
PowerPC 12

W
warning messages 489

new 8

X
xor (XOR) instruction 437
xori (XOR) Immediate) instruction 438
xoril (XOR) Immediate Lower) instruction 438
xoris (XOR Immediate Shift) instruction 439
xoriu (XOR Immediate Upper) instruction 439

588 Assembler Language Reference

Readers’ Comments — We’d Like to Hear from You

AIX 5L for POWER-based Systems
Assembler Language Reference

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Corporation
Publications Department
Internal Zip 9561
11400 Burnet Road
Austin, TX
78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications
	Trademarks

	Chapter 1. Assembler Overview
	Features of the Assembler Prior to this Version
	Features of the AIX Version 4 Assembler
	Multiple Hardware Architecture and Implementation Platform Support
	Host Machine Independence and Target Environment Indicator Flag
	Mnemonics Cross-Reference
	CPU ID Definition
	Source Language Type
	Detection of New Error Conditions
	New Warning Messages
	Special-Purpose Register Changes and Special-Purpose Register FieldHandling

	Assembler Installation
	Related Information

	Chapter 2. Processing and Storage
	Related Information
	POWER family and PowerPC Architecture Overview
	Instruction Forms
	Related Information

	Branch Processor
	Branch Instructions
	System Call Instructions
	Condition Register Instructions

	Fixed-Point Processor
	Fixed-Point Load and Store Instructions
	Fixed-Point Load and Store with Update Instructions
	Fixed-Point String Instructions
	Fixed-Point Address Computation Instructions
	Fixed-Point Arithmetic Instructions
	Fixed-Point Compare Instructions
	Fixed-Point Trap Instructions
	Fixed-Point Logical Instructions
	Fixed-Point Rotate and Shift Instructions
	Fixed-Point Move to or from Special-Purpose Registers Instructions

	Floating-Point Processor
	Floating-Point Numbers
	Interpreting the Contents of a Floating-Point Register
	Floating-Point Load and Store Instructions
	Floating-Point Move Instructions
	Floating-Point Arithmetic Instructions
	Floating-Point Multiply-Add Instructions
	Floating-Point Compare Instructions
	Floating-Point Conversion Instructions
	Floating-Point Status and Control Register Instructions
	Related Information

	Chapter 3. Syntax and Semantics
	Character Set
	Reserved Words
	Line Format
	Statements
	Instruction Statements and Pseudo-Operation Statements
	Null Statements
	Separator Characters
	Labels
	Mnemonics
	Operands
	Comments

	Symbols
	Constructing Symbols
	Defining a Symbol with a Label
	Defining a Symbol with a Pseudo-op
	CSECT Entry Names
	The Special Symbol TOC
	TOC Entry Names
	Using a Symbol before Defining It
	Declaring an External Symbol

	Constants
	Arithmetic Constants
	Character Constants
	Symbolic Constants
	String Constants

	Operators
	Operator Precedence
	Related Information

	Expressions
	Object Mode Considerations
	Types and Values of Terms
	Types and Values of Expressions
	Combination Handling of Expressions
	Related Information

	Chapter 4. Addressing
	Absolute Addressing
	Absolute Immediate Addressing
	Relative Immediate Addressing
	Explicit-Based Addressing
	Implicit-Based Addressing
	Location Counter
	Related Information

	Chapter 5. Assembling and Linking a Program
	Assembling and Linking a Program
	Assembling with the as Command
	Assembling and Linking with the cc Command

	Understanding Assembler Passes
	First Pass
	Second Pass

	Interpreting an Assembler Listing
	Interpreting a Symbol Cross-Reference
	Subroutine Linkage Convention
	Linkage Convention Overview
	Calling Routine's Responsibilities
	Called Routine's Responsibilities
	Traceback Tags
	Example
	Using Milicode Routines

	Understanding and Programming the TOC
	Using the TOC
	Accessing Data through the TOC Entry with TC Storage Mapping Class
	Accessing Data through the TOC entry with TD Storage Mapping Class
	Intermodule Calls Using the TOC

	Running a Program
	Related Information

	Chapter 6. Extended Instruction Mnemonics
	Extended Mnemonics of Branch Instructions
	Branch Mnemonics That Incorporate Only the BO Operand
	Extended Branch Mnemonics That Incorporate the BO Field and aPartial BI Field
	BI Operand of Branch Conditional Instructions for Basic and ExtendedMnemonics
	Extended Mnemonics for Branch Prediction

	Extended Mnemonics of Condition Register Logical Instructions
	Examples
	Related Information

	Extended Mnemonics of Fixed-Point Arithmetic Instructions
	Extended Mnemonics of Fixed-Point Compare Instructions
	Extended Mnemonics of Fixed-Point Load Instructions
	Related Information

	Extended Mnemonics of Fixed-Point Logical Instructions
	Extended Mnemonics of Fixed-Point Trap Instructions
	Examples

	Extended Mnemonic mtcr for Moving to the Condition Register
	Extended Mnemonics of Moving from or to Special-Purpose Registers
	mfspr Extended Mnemonics for POWER family
	mtspr Extended Mnemonics for POWER family
	mfspr Extended Mnemonics for PowerPC
	mtspr Extended Mnemonics for PowerPC
	mfspr Extended Mnemonics for PowerPC 601 RISC Microprocessor
	mtspr Extended Mnemonics for PowerPC 601 RISC Microprocessor

	Extended Mnemonics of 32-bit Fixed-Point Rotate and ShiftInstructions
	Alternative Input Format
	32-bit Rotate and Shift Extended Mnemonics for POWER family andPowerPC
	Examples
	Related Information

	Extended Mnemonics of 64-bit Fixed-Point Rotate and ShiftInstructions
	Alternative Input Format
	64-bit Rotate and Shift Extended Mnemonics for POWER family andPowerPC
	Examples
	Related Information

	Chapter 7. Migrating Source Programs
	Functional Differences for POWER family and PowerPC Instructions
	Differences between POWER family and PowerPC Instructions with theSame Op Code
	Instructions with the Same Op Code, Mnemonic, and Function
	Instructions with the Same Op Code and Function
	mfdec Instructions

	Extended Mnemonics Changes
	Extended Mnemonics in com Mode
	Extended Mnemonics in ppc Mode

	POWER family Instructions Deleted from PowerPC
	New PowerPC Instructions
	Instructions Available Only for the PowerPC 601 RISC Microprocessor
	Migration of Branch Conditional Statements with No Separator afterMnemonic
	Examples
	Related Information

	Chapter 8. Instruction Set
	abs (Absolute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	add (Add) or cax (Compute Address) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addc or a (Add Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	adde or ae (Add Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addi (Add Immediate) or cal (Compute Address Lower) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addic or ai (Add Immediate Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addic. or ai. (Add Immediate Carrying and Record) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addis or cau (Add Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addme or ame (Add to Minus One Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	addze or aze (Add to Zero Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	and (AND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andc (AND with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andi. or andil. (AND Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	andis. or andiu. (AND Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	b (Branch) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	bc (Branch Conditional) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples

	bcctr or bcc (Branch Conditional to Count Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	bclr or bcr (Branch Conditional Link Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	clcs (Cache Line Compute Size) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	clf (Cache Line Flush) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cli (Cache Line Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	cmp (Compare) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpi (Compare Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpl (Compare Logical) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cmpli (Compare Logical Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cntlzd (Count Leading Zeros Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	cntlzw or cntlz (Count Leading Zeros Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crand (Condition Register AND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crandc (Condition Register AND with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	creqv (Condition Register Equivalent) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crnand (Condition Register NAND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crnor (Condition Register NOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	cror (Condition Register OR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crorc (Condition Register OR with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	crxor (Condition Register XOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbf (Data Cache Block Flush) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbi (Data Cache Block Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	dcbst (Data Cache Block Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbt (Data Cache Block Touch) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dcbtst (Data Cache Block Touch for Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	dcbz or dclz (Data Cache Block Set to Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	dclst (Data Cache Line Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	div (Divide) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divd (Divide Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	divdu (Divide Double Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	divs (Divide Short) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divw (Divide Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	divwu (Divide Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	doz (Difference or Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	dozi (Difference or Zero Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	eciwx (External Control In Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	ecowx (External Control Out Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	eieio (Enforce In-Order Execution of I/O) Instruction
	Purpose
	Syntax
	Description
	Examples
	Related Information

	extsw (Extend Sign Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	eqv (Equivalent) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	extsb (Extend Sign Byte) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	extsh or exts (Extend Sign Halfword) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fabs (Floating Absolute Value) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fadd or fa (Floating Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fcfid (Floating Convert from Integer Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fcmpo (Floating Compare Ordered) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fcmpu (Floating Compare Unordered) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fctid (Floating Convert to Integer Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fctidz (Floating Convert to Integer Double Word with Round towardZero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fctiw or fcir (Floating Convert to Integer Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fctiwz or fcirz (Floating Convert to Integer Word with Round to Zero)Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fdiv or fd (Floating Divide) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmadd or fma (Floating Multiply-Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmr (Floating Move Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmsub or fms (Floating Multiply-Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fmul or fm (Floating Multiply) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnabs (Floating Negative Absolute Value) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fneg (Floating Negate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnmadd or fnma (Floating Negative Multiply-Add) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fnmsub or fnms (Floating Negative Multiply-Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	fres (Floating Reciprocal Estimate Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	frsp (Floating Round to Single Precision) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	frsqrte (Floating Reciprocal Square Root Estimate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	fsel (Floating-Point Select) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	fsqrt (Floating Square Root, Double-Precision) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fsqrts (Floating Square Root Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	fsub or fs (Floating Subtract) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	icbi (Instruction Cache Block Invalidate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	isync or ics (Instruction Synchronize) Instruction
	Purpose
	Syntax
	Description
	Examples
	Related Information

	lbz (Load Byte and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzu (Load Byte and Zero with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzux (Load Byte and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lbzx (Load Byte and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ld (Load Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Implementation
	Related Information

	ldarx (Store Double Word Reserve Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ldu (Store Double Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Implementation
	Related Information

	ldux (Store Double Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	ldx (Store Double Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lfd (Load Floating-Point Double) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdu (Load Floating-Point Double with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdux (Load Floating-Point Double with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfdx (Load Floating-Point Double-Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfq (Load Floating-Point Quad) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqu (Load Floating-Point Quad with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqux (Load Floating-Point Quad with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfqx (Load Floating-Point Quad Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfs (Load Floating-Point Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsu (Load Floating-Point Single with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsux (Load Floating-Point Single with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lfsx (Load Floating-Point Single Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lha (Load Half Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhau (Load Half Algebraic with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhaux (Load Half Algebraic with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhax (Load Half Algebraic Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhbrx (Load Half Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhz (Load Half and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzu (Load Half and Zero with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzux (Load Half and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lhzx (Load Half and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lmw or lm (Load Multiple Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lscbx (Load String and Compare Byte Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lswi or lsi (Load String Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lswx or lsx (Load String Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwa (Load Word Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwarx (Load Word and Reserve Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwaux (Load Word Algebraic with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwax (Load Word Algebraic Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	lwbrx or lbrx (Load Word Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwz or l (Load Word and Zero) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzu or lu (Load Word with Zero Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzux or lux (Load Word and Zero with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	lwzx or lx (Load Word and Zero Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	maskg (Mask Generate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	maskir (Mask Insert from Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrf (Move Condition Register Field) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrfs (Move to Condition Register from FPSCR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mcrxr (Move to Condition Register from XER) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfcr (Move from Condition Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mffs (Move from FPSCR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfmsr (Move from Machine State Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Security
	Related Information

	mfspr (Move from Special-Purpose Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfsr (Move from Segment Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Security
	Related Information

	mfsri (Move from Segment Register Indirect) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mfsrin (Move from Segment Register Indirect) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	mtcrf (Move to Condition Register Fields) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsb0 (Move to FPSCR Bit 0) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsb1 (Move to FPSCR Bit 1) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsf (Move to FPSCR Fields) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtfsfi (Move to FPSCR Field Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mtspr (Move to Special-Purpose Register) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mul (Multiply) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulhd (Multiply High Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulhdu (Multiply High Double Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulhw (Multiply High Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulhwu (Multiply High Word Unsigned) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mulld (Multiply Low Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	mulli or muli (Multiply Low Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	mullw or muls (Multiply Low Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nabs (Negative Absolute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nand (NAND) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	neg (Negate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	nor (NOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	or (OR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	orc (OR with Complement) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	ori or oril (OR Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	oris or oriu (OR Immediate Shifted) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rac (Real Address Compute) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	rfi (Return from Interrupt) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	rfid (Return from Interrupt Double Word) Instruction
	Purpose
	Syntax
	Description
	Security
	Implementation

	rfsvc (Return from SVC) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	rldcl (Rotate Left Double Word then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rldcr (Rotate Left Double Word then Clear Right) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldic (Rotate Left Double Word Immediate then Clear) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicl (Rotate Left Double Word Immediate then Clear Left) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldicr (Rotate Left Double Word Immediate then Clear Right)Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rldimi (Rotate Left Double Word Immediate then Mask Insert)Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	rlmi (Rotate Left Then Mask Insert) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwimi or rlimi (Rotate Left Word Immediate Then Mask Insert)Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwinm or rlinm (Rotate Left Word Immediate Then AND with Mask)Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rlwnm or rlnm (Rotate Left Word Then AND with Mask) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	rrib (Rotate Right and Insert Bit) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sc (System Call) Instruction
	Purpose
	Syntax
	Description
	Related Information

	si (Subtract Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	si. (Subtract Immediate and Record) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sld (Shift Left Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sle (Shift Left Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sleq (Shift Left Extended with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sliq (Shift Left Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slliq (Shift Left Long Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sllq (Shift Left Long with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slq (Shift Left with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	slw or sl (Shift Left Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srad (Shift Right Algebraic Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sradi (Shift Right Algebraic Double Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sraiq (Shift Right Algebraic Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sraq (Shift Right Algebraic with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sraw or sra (Shift Right Algebraic Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srawi or srai (Shift Right Algebraic Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srd (Shift Right Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	sre (Shift Right Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srea (Shift Right Extended Algebraic) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sreq (Shift Right Extended with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sriq (Shift Right Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srliq (Shift Right Long Immediate with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srlq (Shift Right Long with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srq (Shift Right with MQ) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	srw or sr (Shift Right Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stb (Store Byte) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbu (Store Byte with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbux (Store Byte with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stbx (Store Byte Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	std (Store Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdcx. (Store Double Word Conditional Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdu (Store Double Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	stdux (Store Double Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stdx (Store Double Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation

	stfd (Store Floating-Point Double) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Reading

	stfdu (Store Floating-Point Double with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfdux (Store Floating-Point Double with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfdx (Store Floating-Point Double Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfiwx (Store Floating-Point as Integer Word Indexed)
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfq (Store Floating-Point Quad) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqu (Store Floating-Point Quad with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqux (Store Floating-Point Quad with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfqx (Store Floating-Point Quad Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	stfs (Store Floating-Point Single) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsu (Store Floating-Point Single with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsux (Store Floating-Point Single with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stfsx (Store Floating-Point Single Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sth (Store Half) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthbrx (Store Half Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthu (Store Half with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthux (Store Half with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	sthx (Store Half Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stmw or stm (Store Multiple Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stswi or stsi (Store String Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stswx or stsx (Store String Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stw or st (Store) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwbrx or stbrx (Store Word Byte-Reverse Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwcx. (Store Word Conditional Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwu or stu (Store Word with Update) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwux or stux (Store Word with Update Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	stwx or stx (Store Word Indexed) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subf (Subtract From) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfc or sf (Subtract from Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfe or sfe (Subtract from Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfic or sfi (Subtract from Immediate Carrying) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfme or sfme (Subtract from Minus One Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	subfze or sfze (Subtract from Zero Extended) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	svc (Supervisor Call) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	sync (Synchronize) or dcs (Data Cache Synchronize) Instruction
	Purpose
	Syntax
	Description
	Examples
	Related Information

	td (Trap Double Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Examples
	Related Information

	tdi (Trap Double Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Implementation
	Related Information

	tlbie or tlbi (Translation Look-Aside Buffer Invalidate Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbld (Load Data TLB Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbli (Load Instruction TLB Entry) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Security
	Related Information

	tlbsync (Translation Look-Aside Buffer Synchronize) Instruction
	Purpose
	Syntax
	Description
	Security
	Related Information

	tw or t (Trap Word) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	twi or ti (Trap Word Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xor (XOR) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xori or xoril (XOR Immediate) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	xoris or xoriu (XOR Immediate Shift) Instruction
	Purpose
	Syntax
	Description
	Parameters
	Example
	Related Information

	Chapter 9. Pseudo-ops
	Pseudo-ops Overview
	Pseudo-ops Grouped by Function
	Notational Conventions

	.align Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bb Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples

	.bc Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bf Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bi Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.bs Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.byte Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.comm Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.csect Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.double Pseudo-op
	Purpose
	Syntax
	Parameters
	Examples
	Related Information

	.drop Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.dsect Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.eb Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.ec Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.ef Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.ei Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.es Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.extern Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.file Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.float Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.function Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.globl Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.hash Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.lcomm Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.lglobl Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.line Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.long Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.llong Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.machine Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.org Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.quad Pseudo-op
	Purpose
	Syntax
	Examples
	Related Information

	.ref Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.rename Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.set Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.short Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.source Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.space Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.stabx Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.string Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.tbtag Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.tc Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.toc Pseudo-op
	Purpose
	Syntax
	Description
	Examples
	Related Information

	.tocof Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.using Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.vbyte Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	.xline Pseudo-op
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Related Information

	Appendix A. Messages
	Appendix B. Instruction Set Sorted by Mnemonic
	Appendix C. Instruction Set Sorted by Primary and ExtendedOp Code
	Appendix D. Instructions Common to POWER family,POWER2, and PowerPC
	Appendix E. POWER family and POWER2 Instructions
	Appendix F. PowerPC Instructions
	Appendix G. PowerPC 601 RISC Microprocessor Instructions
	Appendix H. Value Definitions
	Bits 0-5
	Bits 6-30
	Bit 31

	Appendix I. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

